Loading…
Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data
A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative...
Saved in:
Published in: | Russian meteorology and hydrology 2019-07, Vol.44 (7), p.459-466 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813 |
container_end_page | 466 |
container_issue | 7 |
container_start_page | 459 |
container_title | Russian meteorology and hydrology |
container_volume | 44 |
creator | Andreev, A. I. Shamilova, Yu. A. Kholodov, E. I. |
description | A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images. |
doi_str_mv | 10.3103/S1068373919070045 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268782112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268782112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz525SZs_j9LpFNYJzuFjSbNkbHbNTFrFb2_nBB_Ep3sv53cO3IPQJZARA8Ku50C4ZIIpUEQQkmZHaACKpYkkih_3ey8ne_0UncW4ISTjNBUD9LKI62aFc9-8-7pr177RNZ7ZLnyP9sOH14idDzivfbfEY9tas6ewC36Li_70ISnwzI8wxcV8kRRPeKxbfY5OnK6jvfiZQ7S4u33O75Pp4-Qhv5kmhgFvE0UYVJqyVNGqWmZMOKcdBcoZM5DxSgrjhGXGSU7SSinOK-MskZUQGRAJbIiuDrm74N86G9ty47vQPxFLSrkUkgLQnoIDZYKPMVhX7sJ6q8NnCaTc91f-6a_30IMn9myzsuE3-X_TFzphb1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268782112</pqid></control><display><type>article</type><title>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</title><source>Springer Nature</source><creator>Andreev, A. I. ; Shamilova, Yu. A. ; Kholodov, E. I.</creator><creatorcontrib>Andreev, A. I. ; Shamilova, Yu. A. ; Kholodov, E. I.</creatorcontrib><description>A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.</description><identifier>ISSN: 1068-3739</identifier><identifier>EISSN: 1934-8096</identifier><identifier>DOI: 10.3103/S1068373919070045</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric Sciences ; Cloud computing ; Cloud detection ; Clouds ; Detection ; Earth and Environmental Science ; Earth Sciences ; Learning algorithms ; Machine learning ; Meteorology ; Meteors ; Neural networks ; Satellite imagery ; Satellites ; Spaceborne remote sensing ; Spectroradiometers</subject><ispartof>Russian meteorology and hydrology, 2019-07, Vol.44 (7), p.459-466</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</citedby><cites>FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Andreev, A. I.</creatorcontrib><creatorcontrib>Shamilova, Yu. A.</creatorcontrib><creatorcontrib>Kholodov, E. I.</creatorcontrib><title>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</title><title>Russian meteorology and hydrology</title><addtitle>Russ. Meteorol. Hydrol</addtitle><description>A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Cloud computing</subject><subject>Cloud detection</subject><subject>Clouds</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Meteors</subject><subject>Neural networks</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Spaceborne remote sensing</subject><subject>Spectroradiometers</subject><issn>1068-3739</issn><issn>1934-8096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz525SZs_j9LpFNYJzuFjSbNkbHbNTFrFb2_nBB_Ep3sv53cO3IPQJZARA8Ku50C4ZIIpUEQQkmZHaACKpYkkih_3ey8ne_0UncW4ISTjNBUD9LKI62aFc9-8-7pr177RNZ7ZLnyP9sOH14idDzivfbfEY9tas6ewC36Li_70ISnwzI8wxcV8kRRPeKxbfY5OnK6jvfiZQ7S4u33O75Pp4-Qhv5kmhgFvE0UYVJqyVNGqWmZMOKcdBcoZM5DxSgrjhGXGSU7SSinOK-MskZUQGRAJbIiuDrm74N86G9ty47vQPxFLSrkUkgLQnoIDZYKPMVhX7sJ6q8NnCaTc91f-6a_30IMn9myzsuE3-X_TFzphb1w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Andreev, A. I.</creator><creator>Shamilova, Yu. A.</creator><creator>Kholodov, E. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20190701</creationdate><title>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</title><author>Andreev, A. I. ; Shamilova, Yu. A. ; Kholodov, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Cloud computing</topic><topic>Cloud detection</topic><topic>Clouds</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Meteors</topic><topic>Neural networks</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Spaceborne remote sensing</topic><topic>Spectroradiometers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, A. I.</creatorcontrib><creatorcontrib>Shamilova, Yu. A.</creatorcontrib><creatorcontrib>Kholodov, E. I.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Russian meteorology and hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, A. I.</au><au>Shamilova, Yu. A.</au><au>Kholodov, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</atitle><jtitle>Russian meteorology and hydrology</jtitle><stitle>Russ. Meteorol. Hydrol</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>44</volume><issue>7</issue><spage>459</spage><epage>466</epage><pages>459-466</pages><issn>1068-3739</issn><eissn>1934-8096</eissn><abstract>A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068373919070045</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-3739 |
ispartof | Russian meteorology and hydrology, 2019-07, Vol.44 (7), p.459-466 |
issn | 1068-3739 1934-8096 |
language | eng |
recordid | cdi_proquest_journals_2268782112 |
source | Springer Nature |
subjects | Algorithms Artificial neural networks Atmospheric Sciences Cloud computing Cloud detection Clouds Detection Earth and Environmental Science Earth Sciences Learning algorithms Machine learning Meteorology Meteors Neural networks Satellite imagery Satellites Spaceborne remote sensing Spectroradiometers |
title | Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Convolutional%20Neural%20Networks%20for%20Cloud%20Detection%20from%20Meteor-M%20No.%202%20MSU-MR%20Data&rft.jtitle=Russian%20meteorology%20and%20hydrology&rft.au=Andreev,%20A.%20I.&rft.date=2019-07-01&rft.volume=44&rft.issue=7&rft.spage=459&rft.epage=466&rft.pages=459-466&rft.issn=1068-3739&rft.eissn=1934-8096&rft_id=info:doi/10.3103/S1068373919070045&rft_dat=%3Cproquest_cross%3E2268782112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268782112&rft_id=info:pmid/&rfr_iscdi=true |