Loading…

Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data

A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative...

Full description

Saved in:
Bibliographic Details
Published in:Russian meteorology and hydrology 2019-07, Vol.44 (7), p.459-466
Main Authors: Andreev, A. I., Shamilova, Yu. A., Kholodov, E. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813
cites cdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813
container_end_page 466
container_issue 7
container_start_page 459
container_title Russian meteorology and hydrology
container_volume 44
creator Andreev, A. I.
Shamilova, Yu. A.
Kholodov, E. I.
description A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.
doi_str_mv 10.3103/S1068373919070045
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268782112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268782112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz525SZs_j9LpFNYJzuFjSbNkbHbNTFrFb2_nBB_Ep3sv53cO3IPQJZARA8Ku50C4ZIIpUEQQkmZHaACKpYkkih_3ey8ne_0UncW4ISTjNBUD9LKI62aFc9-8-7pr177RNZ7ZLnyP9sOH14idDzivfbfEY9tas6ewC36Li_70ISnwzI8wxcV8kRRPeKxbfY5OnK6jvfiZQ7S4u33O75Pp4-Qhv5kmhgFvE0UYVJqyVNGqWmZMOKcdBcoZM5DxSgrjhGXGSU7SSinOK-MskZUQGRAJbIiuDrm74N86G9ty47vQPxFLSrkUkgLQnoIDZYKPMVhX7sJ6q8NnCaTc91f-6a_30IMn9myzsuE3-X_TFzphb1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268782112</pqid></control><display><type>article</type><title>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</title><source>Springer Nature</source><creator>Andreev, A. I. ; Shamilova, Yu. A. ; Kholodov, E. I.</creator><creatorcontrib>Andreev, A. I. ; Shamilova, Yu. A. ; Kholodov, E. I.</creatorcontrib><description>A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.</description><identifier>ISSN: 1068-3739</identifier><identifier>EISSN: 1934-8096</identifier><identifier>DOI: 10.3103/S1068373919070045</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric Sciences ; Cloud computing ; Cloud detection ; Clouds ; Detection ; Earth and Environmental Science ; Earth Sciences ; Learning algorithms ; Machine learning ; Meteorology ; Meteors ; Neural networks ; Satellite imagery ; Satellites ; Spaceborne remote sensing ; Spectroradiometers</subject><ispartof>Russian meteorology and hydrology, 2019-07, Vol.44 (7), p.459-466</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</citedby><cites>FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Andreev, A. I.</creatorcontrib><creatorcontrib>Shamilova, Yu. A.</creatorcontrib><creatorcontrib>Kholodov, E. I.</creatorcontrib><title>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</title><title>Russian meteorology and hydrology</title><addtitle>Russ. Meteorol. Hydrol</addtitle><description>A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Cloud computing</subject><subject>Cloud detection</subject><subject>Clouds</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Meteors</subject><subject>Neural networks</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Spaceborne remote sensing</subject><subject>Spectroradiometers</subject><issn>1068-3739</issn><issn>1934-8096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz525SZs_j9LpFNYJzuFjSbNkbHbNTFrFb2_nBB_Ep3sv53cO3IPQJZARA8Ku50C4ZIIpUEQQkmZHaACKpYkkih_3ey8ne_0UncW4ISTjNBUD9LKI62aFc9-8-7pr177RNZ7ZLnyP9sOH14idDzivfbfEY9tas6ewC36Li_70ISnwzI8wxcV8kRRPeKxbfY5OnK6jvfiZQ7S4u33O75Pp4-Qhv5kmhgFvE0UYVJqyVNGqWmZMOKcdBcoZM5DxSgrjhGXGSU7SSinOK-MskZUQGRAJbIiuDrm74N86G9ty47vQPxFLSrkUkgLQnoIDZYKPMVhX7sJ6q8NnCaTc91f-6a_30IMn9myzsuE3-X_TFzphb1w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Andreev, A. I.</creator><creator>Shamilova, Yu. A.</creator><creator>Kholodov, E. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20190701</creationdate><title>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</title><author>Andreev, A. I. ; Shamilova, Yu. A. ; Kholodov, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Cloud computing</topic><topic>Cloud detection</topic><topic>Clouds</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Meteors</topic><topic>Neural networks</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Spaceborne remote sensing</topic><topic>Spectroradiometers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, A. I.</creatorcontrib><creatorcontrib>Shamilova, Yu. A.</creatorcontrib><creatorcontrib>Kholodov, E. I.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Russian meteorology and hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, A. I.</au><au>Shamilova, Yu. A.</au><au>Kholodov, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data</atitle><jtitle>Russian meteorology and hydrology</jtitle><stitle>Russ. Meteorol. Hydrol</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>44</volume><issue>7</issue><spage>459</spage><epage>466</epage><pages>459-466</pages><issn>1068-3739</issn><eissn>1934-8096</eissn><abstract>A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068373919070045</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3739
ispartof Russian meteorology and hydrology, 2019-07, Vol.44 (7), p.459-466
issn 1068-3739
1934-8096
language eng
recordid cdi_proquest_journals_2268782112
source Springer Nature
subjects Algorithms
Artificial neural networks
Atmospheric Sciences
Cloud computing
Cloud detection
Clouds
Detection
Earth and Environmental Science
Earth Sciences
Learning algorithms
Machine learning
Meteorology
Meteors
Neural networks
Satellite imagery
Satellites
Spaceborne remote sensing
Spectroradiometers
title Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Convolutional%20Neural%20Networks%20for%20Cloud%20Detection%20from%20Meteor-M%20No.%202%20MSU-MR%20Data&rft.jtitle=Russian%20meteorology%20and%20hydrology&rft.au=Andreev,%20A.%20I.&rft.date=2019-07-01&rft.volume=44&rft.issue=7&rft.spage=459&rft.epage=466&rft.pages=459-466&rft.issn=1068-3739&rft.eissn=1934-8096&rft_id=info:doi/10.3103/S1068373919070045&rft_dat=%3Cproquest_cross%3E2268782112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9031ba23492bbd537ffaf212633c156b87cf7e3cf8604b9966bcfe08b77510813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268782112&rft_id=info:pmid/&rfr_iscdi=true