Loading…
Calculating the Motion of a Viscous Fluid that Partially Fills a Cylindrical Cavity
The plane-parallel steady motion of a viscous incompressible fluid that partially fills a cylindrical rotating cavity is under consideration. The region occupied by the fluid is simply connected, with two points of a sliding three-phase contact, and the contact angles at which the fluid approaches t...
Saved in:
Published in: | Journal of applied mechanics and technical physics 2019-05, Vol.60 (3), p.491-502 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plane-parallel steady motion of a viscous incompressible fluid that partially fills a cylindrical rotating cavity is under consideration. The region occupied by the fluid is simply connected, with two points of a sliding three-phase contact, and the contact angles at which the fluid approaches the walls are specified at these points. The free boundary of the fluid is curvilinear. There is a slip condition at the interface between the fluid and solid wall, which corresponds to proportionality of tangential stresses of a velocity difference of the solid and fluid particles. The flow region is conformally mapped onto a rectangle. The vortex and current function with a given slip coefficient and different rotation velocities of the cylinder are calculated. |
---|---|
ISSN: | 0021-8944 1573-8620 |
DOI: | 10.1134/S0021894419030118 |