Loading…

SWI post processing using granularity controlled edge‐preserved denoising of multichannel GRE images

The influence of granularities in the background suppressed phase of susceptibility‐weighted images (SWI) and susceptibility‐weighted angiogram (SWAN) becomes significant when the susceptibility based contrast is enhanced by exponential weighting of the high‐pass filtered phase. Furthermore, the eff...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology 2019-09, Vol.29 (3), p.311-322
Main Authors: Madhusoodhanan, Sreekanth, Kesavadas, Chandrasekharan, Paul, Joseph S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2579-eb3b9671cd9d96766cd5f6d258297ed03e2210ed54ee75209ad9730769edfc7a3
container_end_page 322
container_issue 3
container_start_page 311
container_title International journal of imaging systems and technology
container_volume 29
creator Madhusoodhanan, Sreekanth
Kesavadas, Chandrasekharan
Paul, Joseph S.
description The influence of granularities in the background suppressed phase of susceptibility‐weighted images (SWI) and susceptibility‐weighted angiogram (SWAN) becomes significant when the susceptibility based contrast is enhanced by exponential weighting of the high‐pass filtered phase. Furthermore, the effect of noise due to the inherently low signal‐to‐noise ratio resulting from high‐resolution SWI/SWAN acquisition, can be minimized by application of edge‐preserved denoising of the channel phase images without loss of venous structural details. Simultaneous reduction of granularity effects with edge‐preserved denoising is achieved using the proposed granularity controlled adaptive edge‐preserved regularization (GRADER). In this approach, the edge‐preserving cost is minimized with respect to the desired channel phase image and an unknown scale parameter that adaptively tunes the high‐pass filter. The algorithm is implemented using quasi‐Newton type iterations, with the scale parameter updated using a search procedure in each alternating minimization step. The iterations are stopped once the scale parameter converges to a steady state value. Extension of GRADER to parallel MRI (pMRI) by processing the real and imaginary components of complex channel images (IR‐GRADER) results in enhanced susceptibility‐related contrast‐to‐noise ratio of the magnitude SWI, leading to improved visualization of superficial veins and deep gray matter structures.
doi_str_mv 10.1002/ima.22319
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2269357202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269357202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-eb3b9671cd9d96766cd5f6d258297ed03e2210ed54ee75209ad9730769edfc7a3</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazt1XC-rCkqlIiQeYmml9iSkcuNgJ6DuOAJn5CS4DVs2_2hG3z8vhC4pGVFC2Lja5iPGUiqP0IASOU32cowGZCplIidcnKKzEDaEUMoJH6Di6XWJGxda3HinIYSqLnF30NLndWdzX7U7rF3demctGAymhJ-v78ZDAP8RCwZqVx0crsDbzraVfsvrGixePN7guFAJ4RydFLkNcPEXh-jl9uZ5fpesHhbL-WyVaMaFTGCdrmUmqDbSxJhl2vAiM4xPmRRgSAqMUQKGTwAEZ0TmRoqUiEyCKbTI0yG66vvGa947CK3auM7XcaRiLJMpF4ywSF33lPYuBA-Fanzc0-8UJWr_RhUzdXhjZMc9-1lZ2P0PquX9rHf8ApyFdh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269357202</pqid></control><display><type>article</type><title>SWI post processing using granularity controlled edge‐preserved denoising of multichannel GRE images</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Madhusoodhanan, Sreekanth ; Kesavadas, Chandrasekharan ; Paul, Joseph S.</creator><creatorcontrib>Madhusoodhanan, Sreekanth ; Kesavadas, Chandrasekharan ; Paul, Joseph S.</creatorcontrib><description>The influence of granularities in the background suppressed phase of susceptibility‐weighted images (SWI) and susceptibility‐weighted angiogram (SWAN) becomes significant when the susceptibility based contrast is enhanced by exponential weighting of the high‐pass filtered phase. Furthermore, the effect of noise due to the inherently low signal‐to‐noise ratio resulting from high‐resolution SWI/SWAN acquisition, can be minimized by application of edge‐preserved denoising of the channel phase images without loss of venous structural details. Simultaneous reduction of granularity effects with edge‐preserved denoising is achieved using the proposed granularity controlled adaptive edge‐preserved regularization (GRADER). In this approach, the edge‐preserving cost is minimized with respect to the desired channel phase image and an unknown scale parameter that adaptively tunes the high‐pass filter. The algorithm is implemented using quasi‐Newton type iterations, with the scale parameter updated using a search procedure in each alternating minimization step. The iterations are stopped once the scale parameter converges to a steady state value. Extension of GRADER to parallel MRI (pMRI) by processing the real and imaginary components of complex channel images (IR‐GRADER) results in enhanced susceptibility‐related contrast‐to‐noise ratio of the magnitude SWI, leading to improved visualization of superficial veins and deep gray matter structures.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22319</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; alternating minimization ; Image contrast ; Image enhancement ; magnitude SWI ; Noise ; Noise reduction ; Parameters ; phase mask ; potential function ; Regularization ; scale parameter</subject><ispartof>International journal of imaging systems and technology, 2019-09, Vol.29 (3), p.311-322</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-eb3b9671cd9d96766cd5f6d258297ed03e2210ed54ee75209ad9730769edfc7a3</cites><orcidid>0000-0002-2896-6072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Madhusoodhanan, Sreekanth</creatorcontrib><creatorcontrib>Kesavadas, Chandrasekharan</creatorcontrib><creatorcontrib>Paul, Joseph S.</creatorcontrib><title>SWI post processing using granularity controlled edge‐preserved denoising of multichannel GRE images</title><title>International journal of imaging systems and technology</title><description>The influence of granularities in the background suppressed phase of susceptibility‐weighted images (SWI) and susceptibility‐weighted angiogram (SWAN) becomes significant when the susceptibility based contrast is enhanced by exponential weighting of the high‐pass filtered phase. Furthermore, the effect of noise due to the inherently low signal‐to‐noise ratio resulting from high‐resolution SWI/SWAN acquisition, can be minimized by application of edge‐preserved denoising of the channel phase images without loss of venous structural details. Simultaneous reduction of granularity effects with edge‐preserved denoising is achieved using the proposed granularity controlled adaptive edge‐preserved regularization (GRADER). In this approach, the edge‐preserving cost is minimized with respect to the desired channel phase image and an unknown scale parameter that adaptively tunes the high‐pass filter. The algorithm is implemented using quasi‐Newton type iterations, with the scale parameter updated using a search procedure in each alternating minimization step. The iterations are stopped once the scale parameter converges to a steady state value. Extension of GRADER to parallel MRI (pMRI) by processing the real and imaginary components of complex channel images (IR‐GRADER) results in enhanced susceptibility‐related contrast‐to‐noise ratio of the magnitude SWI, leading to improved visualization of superficial veins and deep gray matter structures.</description><subject>Algorithms</subject><subject>alternating minimization</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>magnitude SWI</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>phase mask</subject><subject>potential function</subject><subject>Regularization</subject><subject>scale parameter</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazt1XC-rCkqlIiQeYmml9iSkcuNgJ6DuOAJn5CS4DVs2_2hG3z8vhC4pGVFC2Lja5iPGUiqP0IASOU32cowGZCplIidcnKKzEDaEUMoJH6Di6XWJGxda3HinIYSqLnF30NLndWdzX7U7rF3demctGAymhJ-v78ZDAP8RCwZqVx0crsDbzraVfsvrGixePN7guFAJ4RydFLkNcPEXh-jl9uZ5fpesHhbL-WyVaMaFTGCdrmUmqDbSxJhl2vAiM4xPmRRgSAqMUQKGTwAEZ0TmRoqUiEyCKbTI0yG66vvGa947CK3auM7XcaRiLJMpF4ywSF33lPYuBA-Fanzc0-8UJWr_RhUzdXhjZMc9-1lZ2P0PquX9rHf8ApyFdh0</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Madhusoodhanan, Sreekanth</creator><creator>Kesavadas, Chandrasekharan</creator><creator>Paul, Joseph S.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2896-6072</orcidid></search><sort><creationdate>201909</creationdate><title>SWI post processing using granularity controlled edge‐preserved denoising of multichannel GRE images</title><author>Madhusoodhanan, Sreekanth ; Kesavadas, Chandrasekharan ; Paul, Joseph S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-eb3b9671cd9d96766cd5f6d258297ed03e2210ed54ee75209ad9730769edfc7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>alternating minimization</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>magnitude SWI</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>phase mask</topic><topic>potential function</topic><topic>Regularization</topic><topic>scale parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhusoodhanan, Sreekanth</creatorcontrib><creatorcontrib>Kesavadas, Chandrasekharan</creatorcontrib><creatorcontrib>Paul, Joseph S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhusoodhanan, Sreekanth</au><au>Kesavadas, Chandrasekharan</au><au>Paul, Joseph S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SWI post processing using granularity controlled edge‐preserved denoising of multichannel GRE images</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2019-09</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>311</spage><epage>322</epage><pages>311-322</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>The influence of granularities in the background suppressed phase of susceptibility‐weighted images (SWI) and susceptibility‐weighted angiogram (SWAN) becomes significant when the susceptibility based contrast is enhanced by exponential weighting of the high‐pass filtered phase. Furthermore, the effect of noise due to the inherently low signal‐to‐noise ratio resulting from high‐resolution SWI/SWAN acquisition, can be minimized by application of edge‐preserved denoising of the channel phase images without loss of venous structural details. Simultaneous reduction of granularity effects with edge‐preserved denoising is achieved using the proposed granularity controlled adaptive edge‐preserved regularization (GRADER). In this approach, the edge‐preserving cost is minimized with respect to the desired channel phase image and an unknown scale parameter that adaptively tunes the high‐pass filter. The algorithm is implemented using quasi‐Newton type iterations, with the scale parameter updated using a search procedure in each alternating minimization step. The iterations are stopped once the scale parameter converges to a steady state value. Extension of GRADER to parallel MRI (pMRI) by processing the real and imaginary components of complex channel images (IR‐GRADER) results in enhanced susceptibility‐related contrast‐to‐noise ratio of the magnitude SWI, leading to improved visualization of superficial veins and deep gray matter structures.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.22319</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2896-6072</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2019-09, Vol.29 (3), p.311-322
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2269357202
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
alternating minimization
Image contrast
Image enhancement
magnitude SWI
Noise
Noise reduction
Parameters
phase mask
potential function
Regularization
scale parameter
title SWI post processing using granularity controlled edge‐preserved denoising of multichannel GRE images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SWI%20post%20processing%20using%20granularity%20controlled%20edge%E2%80%90preserved%20denoising%20of%20multichannel%20GRE%20images&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Madhusoodhanan,%20Sreekanth&rft.date=2019-09&rft.volume=29&rft.issue=3&rft.spage=311&rft.epage=322&rft.pages=311-322&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22319&rft_dat=%3Cproquest_cross%3E2269357202%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2579-eb3b9671cd9d96766cd5f6d258297ed03e2210ed54ee75209ad9730769edfc7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2269357202&rft_id=info:pmid/&rfr_iscdi=true