Loading…

Transient Axi-Symmetric Disturbances in Two-Layer Fluid

The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied and computational mathematics 2019-10, Vol.5 (5), p.1-21, Article 125
Main Author: Mohanty, Sanjay Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053
cites cdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053
container_end_page 21
container_issue 5
container_start_page 1
container_title International journal of applied and computational mathematics
container_volume 5
creator Mohanty, Sanjay Kumar
description The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.
doi_str_mv 10.1007/s40819-019-0707-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2269424664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269424664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgMM4HuCu4jt48msdyGB0VCi7sPqRtKhmm7Zi0aP_eDBVcuTjcsziPy0HolsA9AZAPkYMiGsMZEiSeL9CKEq1xLrW4TJzxxAmwa7SJ8QAAlHAJVK2QLIPto3f9mG2_PX6fu86NwdfZo4_jFCrb1y5mvs_KrwEXdnYh2x8n39ygq9Yeo9v83jUq90_l7gUXb8-vu22Ba8rIjLUSlVJUyjb1OcZJzrnUWtWgVHpZVLIROcl14yorkoVVtpWNdS5vWwI5W6O7JfYUhs_JxdEchin0qdFQKjSnXAieVGRR1WGIMbjWnILvbJgNAXNeyCwLGTgjLWTm5KGLJyZt_-HCX_L_ph91pWd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269424664</pqid></control><display><type>article</type><title>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</title><source>Springer Link</source><creator>Mohanty, Sanjay Kumar</creator><creatorcontrib>Mohanty, Sanjay Kumar</creatorcontrib><description>The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-019-0707-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Asymptotic methods ; Case depth ; Computational mathematics ; Computational Science and Engineering ; Disturbances ; Gravitational waves ; Gravity waves ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical ; Water depth ; Water waves ; Waves</subject><ispartof>International journal of applied and computational mathematics, 2019-10, Vol.5 (5), p.1-21, Article 125</ispartof><rights>Springer Nature India Private Limited 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</citedby><cites>FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</cites><orcidid>0000-0001-7095-2806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Mohanty, Sanjay Kumar</creatorcontrib><title>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Asymptotic methods</subject><subject>Case depth</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Disturbances</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Water depth</subject><subject>Water waves</subject><subject>Waves</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgMM4HuCu4jt48msdyGB0VCi7sPqRtKhmm7Zi0aP_eDBVcuTjcsziPy0HolsA9AZAPkYMiGsMZEiSeL9CKEq1xLrW4TJzxxAmwa7SJ8QAAlHAJVK2QLIPto3f9mG2_PX6fu86NwdfZo4_jFCrb1y5mvs_KrwEXdnYh2x8n39ygq9Yeo9v83jUq90_l7gUXb8-vu22Ba8rIjLUSlVJUyjb1OcZJzrnUWtWgVHpZVLIROcl14yorkoVVtpWNdS5vWwI5W6O7JfYUhs_JxdEchin0qdFQKjSnXAieVGRR1WGIMbjWnILvbJgNAXNeyCwLGTgjLWTm5KGLJyZt_-HCX_L_ph91pWd0</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Mohanty, Sanjay Kumar</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7095-2806</orcidid></search><sort><creationdate>20191001</creationdate><title>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</title><author>Mohanty, Sanjay Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Asymptotic methods</topic><topic>Case depth</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Disturbances</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Water depth</topic><topic>Water waves</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Sanjay Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Sanjay Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>5</volume><issue>5</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>125</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-019-0707-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7095-2806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2019-10, Vol.5 (5), p.1-21, Article 125
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2269424664
source Springer Link
subjects Applications of Mathematics
Applied mathematics
Asymptotic methods
Case depth
Computational mathematics
Computational Science and Engineering
Disturbances
Gravitational waves
Gravity waves
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
Water depth
Water waves
Waves
title Transient Axi-Symmetric Disturbances in Two-Layer Fluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Axi-Symmetric%20Disturbances%20in%20Two-Layer%20Fluid&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Mohanty,%20Sanjay%20Kumar&rft.date=2019-10-01&rft.volume=5&rft.issue=5&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=125&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-019-0707-y&rft_dat=%3Cproquest_cross%3E2269424664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2269424664&rft_id=info:pmid/&rfr_iscdi=true