Loading…
Transient Axi-Symmetric Disturbances in Two-Layer Fluid
The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave...
Saved in:
Published in: | International journal of applied and computational mathematics 2019-10, Vol.5 (5), p.1-21, Article 125 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053 |
---|---|
cites | cdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053 |
container_end_page | 21 |
container_issue | 5 |
container_start_page | 1 |
container_title | International journal of applied and computational mathematics |
container_volume | 5 |
creator | Mohanty, Sanjay Kumar |
description | The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space. |
doi_str_mv | 10.1007/s40819-019-0707-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2269424664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269424664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgMM4HuCu4jt48msdyGB0VCi7sPqRtKhmm7Zi0aP_eDBVcuTjcsziPy0HolsA9AZAPkYMiGsMZEiSeL9CKEq1xLrW4TJzxxAmwa7SJ8QAAlHAJVK2QLIPto3f9mG2_PX6fu86NwdfZo4_jFCrb1y5mvs_KrwEXdnYh2x8n39ygq9Yeo9v83jUq90_l7gUXb8-vu22Ba8rIjLUSlVJUyjb1OcZJzrnUWtWgVHpZVLIROcl14yorkoVVtpWNdS5vWwI5W6O7JfYUhs_JxdEchin0qdFQKjSnXAieVGRR1WGIMbjWnILvbJgNAXNeyCwLGTgjLWTm5KGLJyZt_-HCX_L_ph91pWd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269424664</pqid></control><display><type>article</type><title>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</title><source>Springer Link</source><creator>Mohanty, Sanjay Kumar</creator><creatorcontrib>Mohanty, Sanjay Kumar</creatorcontrib><description>The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-019-0707-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Asymptotic methods ; Case depth ; Computational mathematics ; Computational Science and Engineering ; Disturbances ; Gravitational waves ; Gravity waves ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical ; Water depth ; Water waves ; Waves</subject><ispartof>International journal of applied and computational mathematics, 2019-10, Vol.5 (5), p.1-21, Article 125</ispartof><rights>Springer Nature India Private Limited 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</citedby><cites>FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</cites><orcidid>0000-0001-7095-2806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Mohanty, Sanjay Kumar</creatorcontrib><title>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Asymptotic methods</subject><subject>Case depth</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Disturbances</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Water depth</subject><subject>Water waves</subject><subject>Waves</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgMM4HuCu4jt48msdyGB0VCi7sPqRtKhmm7Zi0aP_eDBVcuTjcsziPy0HolsA9AZAPkYMiGsMZEiSeL9CKEq1xLrW4TJzxxAmwa7SJ8QAAlHAJVK2QLIPto3f9mG2_PX6fu86NwdfZo4_jFCrb1y5mvs_KrwEXdnYh2x8n39ygq9Yeo9v83jUq90_l7gUXb8-vu22Ba8rIjLUSlVJUyjb1OcZJzrnUWtWgVHpZVLIROcl14yorkoVVtpWNdS5vWwI5W6O7JfYUhs_JxdEchin0qdFQKjSnXAieVGRR1WGIMbjWnILvbJgNAXNeyCwLGTgjLWTm5KGLJyZt_-HCX_L_ph91pWd0</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Mohanty, Sanjay Kumar</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7095-2806</orcidid></search><sort><creationdate>20191001</creationdate><title>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</title><author>Mohanty, Sanjay Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Asymptotic methods</topic><topic>Case depth</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Disturbances</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Water depth</topic><topic>Water waves</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Sanjay Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Sanjay Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Axi-Symmetric Disturbances in Two-Layer Fluid</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>5</volume><issue>5</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>125</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>The present manuscript deals with the generation of flexural gravity waves due to transient axi-symmetric disturbances in two-layer fluid. Roles of structural rigidity and compressive force on the transient flexural gravity wave motion are analyzed under the assumption of small amplitude water wave theory and structural responses in the case of finite water depth. Using Laplace and Hankel transforms, integral forms of the velocity potentials, structural deflection, surface and interface elevations are derived for the flexural gravity wave motion. Asymptotic solutions for surface and interface elevations are derived in special cases using method of stationary phase for large time and space.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-019-0707-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7095-2806</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2019-10, Vol.5 (5), p.1-21, Article 125 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2269424664 |
source | Springer Link |
subjects | Applications of Mathematics Applied mathematics Asymptotic methods Case depth Computational mathematics Computational Science and Engineering Disturbances Gravitational waves Gravity waves Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical Water depth Water waves Waves |
title | Transient Axi-Symmetric Disturbances in Two-Layer Fluid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Axi-Symmetric%20Disturbances%20in%20Two-Layer%20Fluid&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Mohanty,%20Sanjay%20Kumar&rft.date=2019-10-01&rft.volume=5&rft.issue=5&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=125&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-019-0707-y&rft_dat=%3Cproquest_cross%3E2269424664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231y-986b88277f470e3415447998c0888196b7d65159deba6c233baf7daee5ff1053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2269424664&rft_id=info:pmid/&rfr_iscdi=true |