Loading…
Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model
Based on the higher-order Cauchy–Born (HCB) rule, an atomistic-continuum multiscale model is proposed to address the large-amplitude vibration problem of graphene sheets (GSs) embedded in an elastic medium under various kinds of boundary conditions. By HCB, a linkage is established between the defor...
Saved in:
Published in: | Acta mechanica 2019-12, Vol.230 (12), p.4157-4174 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693 |
container_end_page | 4174 |
container_issue | 12 |
container_start_page | 4157 |
container_title | Acta mechanica |
container_volume | 230 |
creator | Gholami, Y. Shahabodini, A. Ansari, R. Rouhi, H. |
description | Based on the higher-order Cauchy–Born (HCB) rule, an atomistic-continuum multiscale model is proposed to address the large-amplitude vibration problem of graphene sheets (GSs) embedded in an elastic medium under various kinds of boundary conditions. By HCB, a linkage is established between the deformation of the atomic structure and macroscopical deformation gradients without any parameter fitting. The elastic foundation is formulated according to the Winkler–Pasternak model which considers both normal pressure and transverse shear stress effects. The weak form of nonlinear governing equations is derived via a variational approach, namely based on the variational differential quadrature (VDQ) method and Hamilton’s principle. In order to solve the obtained equations, a numerical scheme is adopted in which the generalized differential quadrature (GDQ) method together with a numerical Galerkin technique is utilized for discretization in the space domain, and the time-periodic discretization method is used to discretize in the time domain. The effects of the arrangement of atoms, the Winkler and Pasternak coefficients of the elastic foundation, and boundary conditions on the frequency–response curves of GSs are illustrated. It is revealed that the nonlinear effects on the response of GSs with larger size in armchair direction are less important. |
doi_str_mv | 10.1007/s00707-019-02490-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2270287874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A605287172</galeid><sourcerecordid>A605287172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693</originalsourceid><addsrcrecordid>eNp9UU1PHSEUJaZNfFr_gCsS16PAfMAsjWmriWm70LgkzMzlPZ4MvMJME131H7jwH_pLel-nibuGBO6Fc07u4RByytk5Z0xeZNyYLBhvCyaqlhXPB2TFG2ybtpQfyIoxxou6leyQHOW8xU7Iiq_Iy7cYvAtgEv3lumQmFwM1wfin7DKNlq6T2W0gAM0bgCnTBHlyYU0R9uDCo4f09vv1h8kTpGAeKXgsXU9tnMOwqM15jzcoO8XR7V-LPgYUmeeRjrOfXO6NBzrGAfwn8tEan-Hk33lM7r98vru6Lm6_f725urwt-rJWU1HaCtpaKeCiFEOnSmPlAG3XVII3pqxLy8FyNVRc8G7gSjGAblBNK1sjavyTY3K26O5S_DmjJ72NMzrwWQshmVBSyQpR5wtqjQNqF2yckulxDTA6NAHW4f1lw2okcCmQIBZCn2LOCazeJTea9KQ50_uk9JKUxqT036T0M5LKhZQRHNaQ3mf5D-sPuaqbbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270287874</pqid></control><display><type>article</type><title>Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model</title><source>Springer Nature</source><creator>Gholami, Y. ; Shahabodini, A. ; Ansari, R. ; Rouhi, H.</creator><creatorcontrib>Gholami, Y. ; Shahabodini, A. ; Ansari, R. ; Rouhi, H.</creatorcontrib><description>Based on the higher-order Cauchy–Born (HCB) rule, an atomistic-continuum multiscale model is proposed to address the large-amplitude vibration problem of graphene sheets (GSs) embedded in an elastic medium under various kinds of boundary conditions. By HCB, a linkage is established between the deformation of the atomic structure and macroscopical deformation gradients without any parameter fitting. The elastic foundation is formulated according to the Winkler–Pasternak model which considers both normal pressure and transverse shear stress effects. The weak form of nonlinear governing equations is derived via a variational approach, namely based on the variational differential quadrature (VDQ) method and Hamilton’s principle. In order to solve the obtained equations, a numerical scheme is adopted in which the generalized differential quadrature (GDQ) method together with a numerical Galerkin technique is utilized for discretization in the space domain, and the time-periodic discretization method is used to discretize in the time domain. The effects of the arrangement of atoms, the Winkler and Pasternak coefficients of the elastic foundation, and boundary conditions on the frequency–response curves of GSs are illustrated. It is revealed that the nonlinear effects on the response of GSs with larger size in armchair direction are less important.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-019-02490-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Atomic structure ; Boundary conditions ; Classical and Continuum Physics ; Control ; Differential equations ; Discretization ; Dynamical Systems ; Elastic deformation ; Elastic foundations ; Elastic media ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Galerkin method ; Graphene ; Graphite ; Heat and Mass Transfer ; Mathematical models ; Nonlinear analysis ; Nonlinear equations ; Nonlinear response ; Original Paper ; Shear stress ; Sheets ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration ; Vibration analysis ; Vibration control</subject><ispartof>Acta mechanica, 2019-12, Vol.230 (12), p.4157-4174</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693</citedby><cites>FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gholami, Y.</creatorcontrib><creatorcontrib>Shahabodini, A.</creatorcontrib><creatorcontrib>Ansari, R.</creatorcontrib><creatorcontrib>Rouhi, H.</creatorcontrib><title>Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Based on the higher-order Cauchy–Born (HCB) rule, an atomistic-continuum multiscale model is proposed to address the large-amplitude vibration problem of graphene sheets (GSs) embedded in an elastic medium under various kinds of boundary conditions. By HCB, a linkage is established between the deformation of the atomic structure and macroscopical deformation gradients without any parameter fitting. The elastic foundation is formulated according to the Winkler–Pasternak model which considers both normal pressure and transverse shear stress effects. The weak form of nonlinear governing equations is derived via a variational approach, namely based on the variational differential quadrature (VDQ) method and Hamilton’s principle. In order to solve the obtained equations, a numerical scheme is adopted in which the generalized differential quadrature (GDQ) method together with a numerical Galerkin technique is utilized for discretization in the space domain, and the time-periodic discretization method is used to discretize in the time domain. The effects of the arrangement of atoms, the Winkler and Pasternak coefficients of the elastic foundation, and boundary conditions on the frequency–response curves of GSs are illustrated. It is revealed that the nonlinear effects on the response of GSs with larger size in armchair direction are less important.</description><subject>Analysis</subject><subject>Atomic structure</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Elastic deformation</subject><subject>Elastic foundations</subject><subject>Elastic media</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Galerkin method</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear response</subject><subject>Original Paper</subject><subject>Shear stress</subject><subject>Sheets</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PHSEUJaZNfFr_gCsS16PAfMAsjWmriWm70LgkzMzlPZ4MvMJME131H7jwH_pLel-nibuGBO6Fc07u4RByytk5Z0xeZNyYLBhvCyaqlhXPB2TFG2ybtpQfyIoxxou6leyQHOW8xU7Iiq_Iy7cYvAtgEv3lumQmFwM1wfin7DKNlq6T2W0gAM0bgCnTBHlyYU0R9uDCo4f09vv1h8kTpGAeKXgsXU9tnMOwqM15jzcoO8XR7V-LPgYUmeeRjrOfXO6NBzrGAfwn8tEan-Hk33lM7r98vru6Lm6_f725urwt-rJWU1HaCtpaKeCiFEOnSmPlAG3XVII3pqxLy8FyNVRc8G7gSjGAblBNK1sjavyTY3K26O5S_DmjJ72NMzrwWQshmVBSyQpR5wtqjQNqF2yckulxDTA6NAHW4f1lw2okcCmQIBZCn2LOCazeJTea9KQ50_uk9JKUxqT036T0M5LKhZQRHNaQ3mf5D-sPuaqbbA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gholami, Y.</creator><creator>Shahabodini, A.</creator><creator>Ansari, R.</creator><creator>Rouhi, H.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20191201</creationdate><title>Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model</title><author>Gholami, Y. ; Shahabodini, A. ; Ansari, R. ; Rouhi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Atomic structure</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Elastic deformation</topic><topic>Elastic foundations</topic><topic>Elastic media</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Galerkin method</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear response</topic><topic>Original Paper</topic><topic>Shear stress</topic><topic>Sheets</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholami, Y.</creatorcontrib><creatorcontrib>Shahabodini, A.</creatorcontrib><creatorcontrib>Ansari, R.</creatorcontrib><creatorcontrib>Rouhi, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholami, Y.</au><au>Shahabodini, A.</au><au>Ansari, R.</au><au>Rouhi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>230</volume><issue>12</issue><spage>4157</spage><epage>4174</epage><pages>4157-4174</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>Based on the higher-order Cauchy–Born (HCB) rule, an atomistic-continuum multiscale model is proposed to address the large-amplitude vibration problem of graphene sheets (GSs) embedded in an elastic medium under various kinds of boundary conditions. By HCB, a linkage is established between the deformation of the atomic structure and macroscopical deformation gradients without any parameter fitting. The elastic foundation is formulated according to the Winkler–Pasternak model which considers both normal pressure and transverse shear stress effects. The weak form of nonlinear governing equations is derived via a variational approach, namely based on the variational differential quadrature (VDQ) method and Hamilton’s principle. In order to solve the obtained equations, a numerical scheme is adopted in which the generalized differential quadrature (GDQ) method together with a numerical Galerkin technique is utilized for discretization in the space domain, and the time-periodic discretization method is used to discretize in the time domain. The effects of the arrangement of atoms, the Winkler and Pasternak coefficients of the elastic foundation, and boundary conditions on the frequency–response curves of GSs are illustrated. It is revealed that the nonlinear effects on the response of GSs with larger size in armchair direction are less important.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-019-02490-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2019-12, Vol.230 (12), p.4157-4174 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2270287874 |
source | Springer Nature |
subjects | Analysis Atomic structure Boundary conditions Classical and Continuum Physics Control Differential equations Discretization Dynamical Systems Elastic deformation Elastic foundations Elastic media Engineering Engineering Fluid Dynamics Engineering Thermodynamics Galerkin method Graphene Graphite Heat and Mass Transfer Mathematical models Nonlinear analysis Nonlinear equations Nonlinear response Original Paper Shear stress Sheets Solid Mechanics Theoretical and Applied Mechanics Vibration Vibration analysis Vibration control |
title | Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20vibration%20analysis%20of%20graphene%20sheets%20resting%20on%20Winkler%E2%80%93Pasternak%20elastic%20foundation%20using%20an%20atomistic-continuum%20multiscale%20model&rft.jtitle=Acta%20mechanica&rft.au=Gholami,%20Y.&rft.date=2019-12-01&rft.volume=230&rft.issue=12&rft.spage=4157&rft.epage=4174&rft.pages=4157-4174&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-019-02490-z&rft_dat=%3Cgale_proqu%3EA605287172%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-3f4e9588e1232db83af7de9b64216a353f1ef18d4121bd1880eebd86979a25693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2270287874&rft_id=info:pmid/&rft_galeid=A605287172&rfr_iscdi=true |