Loading…
The Yvrl Alternative [sigma] Factor Is Essential for Acid Stress Induction of Oxalate Decarboxylase in Bacillus subtilis
YvrI is a recently identified alternative ... factor in Bacillus subtilis that requires the coactivator YvrHa to activate transcription. Previously, a strain engineered to overproduce YvrI was found to overproduce oxalate decarboxylase (OxdC), and further analysis identified three YvrI-activated pro...
Saved in:
Published in: | Journal of bacteriology 2009-02, Vol.191 (3), p.931 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | YvrI is a recently identified alternative ... factor in Bacillus subtilis that requires the coactivator YvrHa to activate transcription. Previously, a strain engineered to overproduce YvrI was found to overproduce oxalate decarboxylase (OxdC), and further analysis identified three YvrI-activated promoters preceding the yvrI-yvrHa, yvrJ, and oxdC-yvrL operons. Independently, proteome analyses identified OxdC as a highly abundant, cell wall-associated protein that accumulated under acidic growth conditions. We show here that the accumulation of OxdC in the cell wall proteome under acidic growth conditions is absolutely dependent on YvrI and is correlated with enhanced transcription of both the yvrI-yvrHa and the oxdC-yvrL operons. Conversely, OxdC accumulates to a high level even under nonacidic growth conditions in cells lacking YvrL, a negative regulator of YvrI/YvrHa-dependent transcription. These results indicate that YvrI and its associated coregulators YvrHa and YvrL are required for the regulation of OxdC expression by acid stress. The high-level accumulation of OxdC depends, in part, on a strong oxd-C promoter. A regulatory sequence with similarity to an upstream promoter element (UP) was identified upstream of the oxdC promoter and is required for high-level promoter activity. Conservation of the YvrI/YvrHa/YvrL regulatory system among related species allowed us to deduce an expanded consensus sequence for the compositionally unusual promoters recognized by this new ... factor. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
ISSN: | 0021-9193 1098-5530 |