Loading…
Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics
We consider stabilisation for a nonlinear ordinary differential equation (ODE) and counter-convecting transport partial differential equations (PDEs) cascaded system in which the transport coefficients depend on the ODE state. Stability analysis of the closed-loop system is based on the infinite-dim...
Saved in:
Published in: | International journal of systems science 2019-07, Vol.50 (10), p.2053-2062 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83 |
container_end_page | 2062 |
container_issue | 10 |
container_start_page | 2053 |
container_title | International journal of systems science |
container_volume | 50 |
creator | Cai, Xiushan Wang, Dingchao Liu, Yang Zhan, Xisheng Yan, Huaicheng |
description | We consider stabilisation for a nonlinear ordinary differential equation (ODE) and counter-convecting transport partial differential equations (PDEs) cascaded system in which the transport coefficients depend on the ODE state. Stability analysis of the closed-loop system is based on the infinite-dimensional backstepping transformations and a Lyapunov functional. A predictor control is proposed such that the closed-loop system is globally asymptotically stable. The proposed design method is illustrated by a single-link manipulator. |
doi_str_mv | 10.1080/00207721.2019.1646350 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2271779676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2271779676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QQi4nnozmUxmdkqtDyh0oV2HTB6SMk1qkir9987QunV1N985h_shdEtgRqCBe4ASOC_JrATSzkhd1ZTBGZqQqq4KRkl7jiYjU4zQJbpKaQMAjJUwQev3LDvXuySzCx7bELGSSUltcLDYB987b2TEq6dFwtJrrMLeZxMLFfy3Udn5T5yj9GkXYsb64OXWqXSNLqzsk7k53SlaPy8-5q_FcvXyNn9cForSJheSGFJxa4AaRRRtaVXyxmrbUa15pWxHgLU1Y5w1jGtSad100HTKdFRSoho6RXfH3l0MX3uTstiEffTDpChLTjhva14PFDtSKoaUorFiF91WxoMgIEaD4s-gGA2Kk8Eh93DMOT942cqfEHstsjz0IdrhZ-WSoP9X_AJHZXhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271779676</pqid></control><display><type>article</type><title>Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics</title><source>Taylor and Francis Science and Technology Collection</source><creator>Cai, Xiushan ; Wang, Dingchao ; Liu, Yang ; Zhan, Xisheng ; Yan, Huaicheng</creator><creatorcontrib>Cai, Xiushan ; Wang, Dingchao ; Liu, Yang ; Zhan, Xisheng ; Yan, Huaicheng</creatorcontrib><description>We consider stabilisation for a nonlinear ordinary differential equation (ODE) and counter-convecting transport partial differential equations (PDEs) cascaded system in which the transport coefficients depend on the ODE state. Stability analysis of the closed-loop system is based on the infinite-dimensional backstepping transformations and a Lyapunov functional. A predictor control is proposed such that the closed-loop system is globally asymptotically stable. The proposed design method is illustrated by a single-link manipulator.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207721.2019.1646350</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>backstepping transformations ; Cascaded system ; Closed loop systems ; counter-convecting transport dynamics ; Dimensional stability ; Feedback control ; Ordinary differential equations ; Partial differential equations ; predictor control ; Stability analysis ; Transport properties</subject><ispartof>International journal of systems science, 2019-07, Vol.50 (10), p.2053-2062</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83</citedby><cites>FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Xiushan</creatorcontrib><creatorcontrib>Wang, Dingchao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhan, Xisheng</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><title>Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics</title><title>International journal of systems science</title><description>We consider stabilisation for a nonlinear ordinary differential equation (ODE) and counter-convecting transport partial differential equations (PDEs) cascaded system in which the transport coefficients depend on the ODE state. Stability analysis of the closed-loop system is based on the infinite-dimensional backstepping transformations and a Lyapunov functional. A predictor control is proposed such that the closed-loop system is globally asymptotically stable. The proposed design method is illustrated by a single-link manipulator.</description><subject>backstepping transformations</subject><subject>Cascaded system</subject><subject>Closed loop systems</subject><subject>counter-convecting transport dynamics</subject><subject>Dimensional stability</subject><subject>Feedback control</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>predictor control</subject><subject>Stability analysis</subject><subject>Transport properties</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QQi4nnozmUxmdkqtDyh0oV2HTB6SMk1qkir9987QunV1N985h_shdEtgRqCBe4ASOC_JrATSzkhd1ZTBGZqQqq4KRkl7jiYjU4zQJbpKaQMAjJUwQev3LDvXuySzCx7bELGSSUltcLDYB987b2TEq6dFwtJrrMLeZxMLFfy3Udn5T5yj9GkXYsb64OXWqXSNLqzsk7k53SlaPy8-5q_FcvXyNn9cForSJheSGFJxa4AaRRRtaVXyxmrbUa15pWxHgLU1Y5w1jGtSad100HTKdFRSoho6RXfH3l0MX3uTstiEffTDpChLTjhva14PFDtSKoaUorFiF91WxoMgIEaD4s-gGA2Kk8Eh93DMOT942cqfEHstsjz0IdrhZ-WSoP9X_AJHZXhA</recordid><startdate>20190727</startdate><enddate>20190727</enddate><creator>Cai, Xiushan</creator><creator>Wang, Dingchao</creator><creator>Liu, Yang</creator><creator>Zhan, Xisheng</creator><creator>Yan, Huaicheng</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190727</creationdate><title>Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics</title><author>Cai, Xiushan ; Wang, Dingchao ; Liu, Yang ; Zhan, Xisheng ; Yan, Huaicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>backstepping transformations</topic><topic>Cascaded system</topic><topic>Closed loop systems</topic><topic>counter-convecting transport dynamics</topic><topic>Dimensional stability</topic><topic>Feedback control</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>predictor control</topic><topic>Stability analysis</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Xiushan</creatorcontrib><creatorcontrib>Wang, Dingchao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhan, Xisheng</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Xiushan</au><au>Wang, Dingchao</au><au>Liu, Yang</au><au>Zhan, Xisheng</au><au>Yan, Huaicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics</atitle><jtitle>International journal of systems science</jtitle><date>2019-07-27</date><risdate>2019</risdate><volume>50</volume><issue>10</issue><spage>2053</spage><epage>2062</epage><pages>2053-2062</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>We consider stabilisation for a nonlinear ordinary differential equation (ODE) and counter-convecting transport partial differential equations (PDEs) cascaded system in which the transport coefficients depend on the ODE state. Stability analysis of the closed-loop system is based on the infinite-dimensional backstepping transformations and a Lyapunov functional. A predictor control is proposed such that the closed-loop system is globally asymptotically stable. The proposed design method is illustrated by a single-link manipulator.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207721.2019.1646350</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7721 |
ispartof | International journal of systems science, 2019-07, Vol.50 (10), p.2053-2062 |
issn | 0020-7721 1464-5319 |
language | eng |
recordid | cdi_proquest_journals_2271779676 |
source | Taylor and Francis Science and Technology Collection |
subjects | backstepping transformations Cascaded system Closed loop systems counter-convecting transport dynamics Dimensional stability Feedback control Ordinary differential equations Partial differential equations predictor control Stability analysis Transport properties |
title | Stabilisation for cascade of nonlinear ODEs and counter-convecting transport dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilisation%20for%20cascade%20of%20nonlinear%20ODEs%20and%20counter-convecting%20transport%20dynamics&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Cai,%20Xiushan&rft.date=2019-07-27&rft.volume=50&rft.issue=10&rft.spage=2053&rft.epage=2062&rft.pages=2053-2062&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207721.2019.1646350&rft_dat=%3Cproquest_cross%3E2271779676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-a1e147fe03ec1c3934278fdfb3dd74cfb105965575857d14dd8b08bceb3a31c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2271779676&rft_id=info:pmid/&rfr_iscdi=true |