Loading…

Timescales of Birkeland Currents Driven by the IMF

We obtain current densities from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), alongside By and Bz from the Interplanetary Magnetic Field (IMF) for March 2010. For each AMPERE spatial coordinate, we cross‐correlate current density with By and Bz, finding the ma...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2019-07, Vol.46 (14), p.7893-7901
Main Authors: Coxon, John C., Shore, Robert M., Freeman, Mervyn P., Fear, Robert C., Browett, Stephen D., Smith, Andrew W., Whiter, Daniel K., Anderson, Brian J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3
cites cdi_FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3
container_end_page 7901
container_issue 14
container_start_page 7893
container_title Geophysical research letters
container_volume 46
creator Coxon, John C.
Shore, Robert M.
Freeman, Mervyn P.
Fear, Robert C.
Browett, Stephen D.
Smith, Andrew W.
Whiter, Daniel K.
Anderson, Brian J.
description We obtain current densities from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), alongside By and Bz from the Interplanetary Magnetic Field (IMF) for March 2010. For each AMPERE spatial coordinate, we cross‐correlate current density with By and Bz, finding the maximum correlation for lags up to 360 min. The patterns of maximum correlation contain large‐scale structures consistent with the literature. For the correlation with By, the lags on the dayside are 10 min at high latitudes but up to 240 min at lower latitudes. Lags on the nightside are 90–150 min. For Bz, the shortest lags on the dayside are 10–20 min; on the equatorward edge of the current oval, 60–90 min; and on the nightside, predominantly 90–150 min. This novel approach enables us to see statistically the timescales on which information is electrodynamically communicated to the ionosphere after magnetic field lines reconnect on the dayside and nightside. Plain Language Summary We take the minute‐by‐minute behavior of the interplanetary magnetic field (which is in the solar wind) and electric currents flowing along Earth's magnetic field lines in the Northern Hemisphere. We move them with respect to one another to find the time lag required to make them agree best, and then note the best agreement and the time lag that we found. We plot both of these quantities on maps of the Earth's Northern Hemisphere, and then analyze these maps to uncover new information about Earth's reaction to the solar wind. Key Points We cross‐correlate Birkeland current density with IMF By and Bz and find morphology of R1/R2 and other current systems Bz direct driving timescales are 10‐20 min; expanded polar cap timescales, 60‐90 min; and nightside timescales, 120‐150 min By shows 10‐min timescales on the dayside at high latitudes, but lags up to 240 min elsewhere
doi_str_mv 10.1029/2018GL081658
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272117159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272117159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz9gwavVmc1-5ai1rYWIIPUctptZTE2Tutsq_fdG6sGTl5k5PLwDL2OXCDcIIr8VgHZWgEWt7BEbYC7lyAKYYzYAyPtbGH3KzlJaAUAGGQ6YWNRrSt41lHgX-H0d36lxbcXHuxip3Sb-EOtPavlyz7dvxOdP03N2ElyT6OJ3D9nrdLIYP46K59l8fFeMvEQw_QSFJljvllJ7FSqpQ0AnKpAKtZamElpIIu0rSd4oUiCtc8aGZWYh-GzIrg65m9h97Chty1W3i23_shTCCESDKu_V9UH52KUUKZSbWK9d3JcI5U8r5d9Wei4O_KtuaP-vLWcvhbIGTPYNbWRg1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272117159</pqid></control><display><type>article</type><title>Timescales of Birkeland Currents Driven by the IMF</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Coxon, John C. ; Shore, Robert M. ; Freeman, Mervyn P. ; Fear, Robert C. ; Browett, Stephen D. ; Smith, Andrew W. ; Whiter, Daniel K. ; Anderson, Brian J.</creator><creatorcontrib>Coxon, John C. ; Shore, Robert M. ; Freeman, Mervyn P. ; Fear, Robert C. ; Browett, Stephen D. ; Smith, Andrew W. ; Whiter, Daniel K. ; Anderson, Brian J.</creatorcontrib><description>We obtain current densities from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), alongside By and Bz from the Interplanetary Magnetic Field (IMF) for March 2010. For each AMPERE spatial coordinate, we cross‐correlate current density with By and Bz, finding the maximum correlation for lags up to 360 min. The patterns of maximum correlation contain large‐scale structures consistent with the literature. For the correlation with By, the lags on the dayside are 10 min at high latitudes but up to 240 min at lower latitudes. Lags on the nightside are 90–150 min. For Bz, the shortest lags on the dayside are 10–20 min; on the equatorward edge of the current oval, 60–90 min; and on the nightside, predominantly 90–150 min. This novel approach enables us to see statistically the timescales on which information is electrodynamically communicated to the ionosphere after magnetic field lines reconnect on the dayside and nightside. Plain Language Summary We take the minute‐by‐minute behavior of the interplanetary magnetic field (which is in the solar wind) and electric currents flowing along Earth's magnetic field lines in the Northern Hemisphere. We move them with respect to one another to find the time lag required to make them agree best, and then note the best agreement and the time lag that we found. We plot both of these quantities on maps of the Earth's Northern Hemisphere, and then analyze these maps to uncover new information about Earth's reaction to the solar wind. Key Points We cross‐correlate Birkeland current density with IMF By and Bz and find morphology of R1/R2 and other current systems Bz direct driving timescales are 10‐20 min; expanded polar cap timescales, 60‐90 min; and nightside timescales, 120‐150 min By shows 10‐min timescales on the dayside at high latitudes, but lags up to 240 min elsewhere</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL081658</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Birkeland currents ; Correlation ; Current density ; Earth ; Electric currents ; Electrodynamics ; field‐aligned currents ; Geomagnetic field ; Interplanetary magnetic field ; Ionosphere ; Latitude ; Lines ; Magnetic field ; Magnetic fields ; Magnetism ; magnetopause ; Magnetospheres ; magnetotail ; Northern Hemisphere ; Solar magnetic field ; Solar wind ; substorms ; Time lag ; timescales</subject><ispartof>Geophysical research letters, 2019-07, Vol.46 (14), p.7893-7901</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3</citedby><cites>FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3</cites><orcidid>0000-0002-8653-8279 ; 0000-0003-0589-7147 ; 0000-0003-2543-0149 ; 0000-0002-0166-6854 ; 0000-0002-8386-1425 ; 0000-0003-0500-6244 ; 0000-0001-7321-4331 ; 0000-0001-7130-232X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL081658$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL081658$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Coxon, John C.</creatorcontrib><creatorcontrib>Shore, Robert M.</creatorcontrib><creatorcontrib>Freeman, Mervyn P.</creatorcontrib><creatorcontrib>Fear, Robert C.</creatorcontrib><creatorcontrib>Browett, Stephen D.</creatorcontrib><creatorcontrib>Smith, Andrew W.</creatorcontrib><creatorcontrib>Whiter, Daniel K.</creatorcontrib><creatorcontrib>Anderson, Brian J.</creatorcontrib><title>Timescales of Birkeland Currents Driven by the IMF</title><title>Geophysical research letters</title><description>We obtain current densities from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), alongside By and Bz from the Interplanetary Magnetic Field (IMF) for March 2010. For each AMPERE spatial coordinate, we cross‐correlate current density with By and Bz, finding the maximum correlation for lags up to 360 min. The patterns of maximum correlation contain large‐scale structures consistent with the literature. For the correlation with By, the lags on the dayside are 10 min at high latitudes but up to 240 min at lower latitudes. Lags on the nightside are 90–150 min. For Bz, the shortest lags on the dayside are 10–20 min; on the equatorward edge of the current oval, 60–90 min; and on the nightside, predominantly 90–150 min. This novel approach enables us to see statistically the timescales on which information is electrodynamically communicated to the ionosphere after magnetic field lines reconnect on the dayside and nightside. Plain Language Summary We take the minute‐by‐minute behavior of the interplanetary magnetic field (which is in the solar wind) and electric currents flowing along Earth's magnetic field lines in the Northern Hemisphere. We move them with respect to one another to find the time lag required to make them agree best, and then note the best agreement and the time lag that we found. We plot both of these quantities on maps of the Earth's Northern Hemisphere, and then analyze these maps to uncover new information about Earth's reaction to the solar wind. Key Points We cross‐correlate Birkeland current density with IMF By and Bz and find morphology of R1/R2 and other current systems Bz direct driving timescales are 10‐20 min; expanded polar cap timescales, 60‐90 min; and nightside timescales, 120‐150 min By shows 10‐min timescales on the dayside at high latitudes, but lags up to 240 min elsewhere</description><subject>Birkeland currents</subject><subject>Correlation</subject><subject>Current density</subject><subject>Earth</subject><subject>Electric currents</subject><subject>Electrodynamics</subject><subject>field‐aligned currents</subject><subject>Geomagnetic field</subject><subject>Interplanetary magnetic field</subject><subject>Ionosphere</subject><subject>Latitude</subject><subject>Lines</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>magnetopause</subject><subject>Magnetospheres</subject><subject>magnetotail</subject><subject>Northern Hemisphere</subject><subject>Solar magnetic field</subject><subject>Solar wind</subject><subject>substorms</subject><subject>Time lag</subject><subject>timescales</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz9gwavVmc1-5ai1rYWIIPUctptZTE2Tutsq_fdG6sGTl5k5PLwDL2OXCDcIIr8VgHZWgEWt7BEbYC7lyAKYYzYAyPtbGH3KzlJaAUAGGQ6YWNRrSt41lHgX-H0d36lxbcXHuxip3Sb-EOtPavlyz7dvxOdP03N2ElyT6OJ3D9nrdLIYP46K59l8fFeMvEQw_QSFJljvllJ7FSqpQ0AnKpAKtZamElpIIu0rSd4oUiCtc8aGZWYh-GzIrg65m9h97Chty1W3i23_shTCCESDKu_V9UH52KUUKZSbWK9d3JcI5U8r5d9Wei4O_KtuaP-vLWcvhbIGTPYNbWRg1Q</recordid><startdate>20190728</startdate><enddate>20190728</enddate><creator>Coxon, John C.</creator><creator>Shore, Robert M.</creator><creator>Freeman, Mervyn P.</creator><creator>Fear, Robert C.</creator><creator>Browett, Stephen D.</creator><creator>Smith, Andrew W.</creator><creator>Whiter, Daniel K.</creator><creator>Anderson, Brian J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8653-8279</orcidid><orcidid>https://orcid.org/0000-0003-0589-7147</orcidid><orcidid>https://orcid.org/0000-0003-2543-0149</orcidid><orcidid>https://orcid.org/0000-0002-0166-6854</orcidid><orcidid>https://orcid.org/0000-0002-8386-1425</orcidid><orcidid>https://orcid.org/0000-0003-0500-6244</orcidid><orcidid>https://orcid.org/0000-0001-7321-4331</orcidid><orcidid>https://orcid.org/0000-0001-7130-232X</orcidid></search><sort><creationdate>20190728</creationdate><title>Timescales of Birkeland Currents Driven by the IMF</title><author>Coxon, John C. ; Shore, Robert M. ; Freeman, Mervyn P. ; Fear, Robert C. ; Browett, Stephen D. ; Smith, Andrew W. ; Whiter, Daniel K. ; Anderson, Brian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Birkeland currents</topic><topic>Correlation</topic><topic>Current density</topic><topic>Earth</topic><topic>Electric currents</topic><topic>Electrodynamics</topic><topic>field‐aligned currents</topic><topic>Geomagnetic field</topic><topic>Interplanetary magnetic field</topic><topic>Ionosphere</topic><topic>Latitude</topic><topic>Lines</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>magnetopause</topic><topic>Magnetospheres</topic><topic>magnetotail</topic><topic>Northern Hemisphere</topic><topic>Solar magnetic field</topic><topic>Solar wind</topic><topic>substorms</topic><topic>Time lag</topic><topic>timescales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coxon, John C.</creatorcontrib><creatorcontrib>Shore, Robert M.</creatorcontrib><creatorcontrib>Freeman, Mervyn P.</creatorcontrib><creatorcontrib>Fear, Robert C.</creatorcontrib><creatorcontrib>Browett, Stephen D.</creatorcontrib><creatorcontrib>Smith, Andrew W.</creatorcontrib><creatorcontrib>Whiter, Daniel K.</creatorcontrib><creatorcontrib>Anderson, Brian J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coxon, John C.</au><au>Shore, Robert M.</au><au>Freeman, Mervyn P.</au><au>Fear, Robert C.</au><au>Browett, Stephen D.</au><au>Smith, Andrew W.</au><au>Whiter, Daniel K.</au><au>Anderson, Brian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timescales of Birkeland Currents Driven by the IMF</atitle><jtitle>Geophysical research letters</jtitle><date>2019-07-28</date><risdate>2019</risdate><volume>46</volume><issue>14</issue><spage>7893</spage><epage>7901</epage><pages>7893-7901</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We obtain current densities from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), alongside By and Bz from the Interplanetary Magnetic Field (IMF) for March 2010. For each AMPERE spatial coordinate, we cross‐correlate current density with By and Bz, finding the maximum correlation for lags up to 360 min. The patterns of maximum correlation contain large‐scale structures consistent with the literature. For the correlation with By, the lags on the dayside are 10 min at high latitudes but up to 240 min at lower latitudes. Lags on the nightside are 90–150 min. For Bz, the shortest lags on the dayside are 10–20 min; on the equatorward edge of the current oval, 60–90 min; and on the nightside, predominantly 90–150 min. This novel approach enables us to see statistically the timescales on which information is electrodynamically communicated to the ionosphere after magnetic field lines reconnect on the dayside and nightside. Plain Language Summary We take the minute‐by‐minute behavior of the interplanetary magnetic field (which is in the solar wind) and electric currents flowing along Earth's magnetic field lines in the Northern Hemisphere. We move them with respect to one another to find the time lag required to make them agree best, and then note the best agreement and the time lag that we found. We plot both of these quantities on maps of the Earth's Northern Hemisphere, and then analyze these maps to uncover new information about Earth's reaction to the solar wind. Key Points We cross‐correlate Birkeland current density with IMF By and Bz and find morphology of R1/R2 and other current systems Bz direct driving timescales are 10‐20 min; expanded polar cap timescales, 60‐90 min; and nightside timescales, 120‐150 min By shows 10‐min timescales on the dayside at high latitudes, but lags up to 240 min elsewhere</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL081658</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8653-8279</orcidid><orcidid>https://orcid.org/0000-0003-0589-7147</orcidid><orcidid>https://orcid.org/0000-0003-2543-0149</orcidid><orcidid>https://orcid.org/0000-0002-0166-6854</orcidid><orcidid>https://orcid.org/0000-0002-8386-1425</orcidid><orcidid>https://orcid.org/0000-0003-0500-6244</orcidid><orcidid>https://orcid.org/0000-0001-7321-4331</orcidid><orcidid>https://orcid.org/0000-0001-7130-232X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-07, Vol.46 (14), p.7893-7901
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2272117159
source Wiley-Blackwell AGU Digital Archive
subjects Birkeland currents
Correlation
Current density
Earth
Electric currents
Electrodynamics
field‐aligned currents
Geomagnetic field
Interplanetary magnetic field
Ionosphere
Latitude
Lines
Magnetic field
Magnetic fields
Magnetism
magnetopause
Magnetospheres
magnetotail
Northern Hemisphere
Solar magnetic field
Solar wind
substorms
Time lag
timescales
title Timescales of Birkeland Currents Driven by the IMF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timescales%20of%20Birkeland%20Currents%20Driven%20by%20the%20IMF&rft.jtitle=Geophysical%20research%20letters&rft.au=Coxon,%20John%20C.&rft.date=2019-07-28&rft.volume=46&rft.issue=14&rft.spage=7893&rft.epage=7901&rft.pages=7893-7901&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL081658&rft_dat=%3Cproquest_cross%3E2272117159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4107-c40517f8cab46c5fd46ff1a2d04516647d2624ee6cd4ec75e5048aa78fb380fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272117159&rft_id=info:pmid/&rfr_iscdi=true