Loading…
Incompatible and sterile insect techniques combined eliminate mosquitoes
The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)—which uses sterilization caused by the maternally inherited end...
Saved in:
Published in: | Nature (London) 2019-08, Vol.572 (7767), p.56-61 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)—which uses sterilization caused by the maternally inherited endosymbiotic bacteria
Wolbachia
—is a promising alternative, but can be undermined by accidental release of females infected with the same
Wolbachia
strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT–SIT) enables near elimination of field populations of the world’s most invasive mosquito species,
Aedes albopictus
. Millions of factory-reared adult males with an artificial triple-
Wolbachia
infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT–SIT for mosquito vector control.
A field trial succeeded in eliminating populations of the mosquito
Aedes albopictus
through inundative mass release of incompatible
Wolbachia
-infected males, which were also irradiated to sterilize any accidentally-released females, and so prevent population replacement. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-019-1407-9 |