Loading…
Physicochemical Characterization of Robusta Spent Coffee Ground Oil for Biodiesel Manufacturing
Oil extracted from spent coffee ground (SCG) has been well known as a potential feedstock for high quality biodiesel production. This work was to investigate extraction, physical and chemical characterizations of Robusta coffee oil (CO) and its application for biodiesel production. Analysis of seven...
Saved in:
Published in: | Waste and biomass valorization 2019-09, Vol.10 (9), p.2703-2712 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oil extracted from spent coffee ground (SCG) has been well known as a potential feedstock for high quality biodiesel production. This work was to investigate extraction, physical and chemical characterizations of
Robusta
coffee oil (CO) and its application for biodiesel production. Analysis of seven coffee ground (CG) samples showed that oil content in CGs depended on technique of the manufacturer. Morphological changes of CGs surface were recorded by FESEM technique which showed the particle size significantly increased with the oil loss. Infrared spectroscopies revealed absence of SCG oil in the de-oiled SCG, confirmed that soxhlet method in hexane was used efficiently for the oil extraction. Thermal properties of SCG oil, fresh coffee ground (FCG), SCG and de-oiled SCG samples were investigated by simultaneous TG–DTA measurement. The obtained data showed the oil content relating to thermal changes of SCG samples. Comparison between chemical components of
Robusta
coffee bean (RCB) and SCG reflected a fact that most of oil content in the SCG could be originated in manufacturing process of FCG. Quality biodiesel product has prepared from SCG oils via a two-step process. After pre-treatment process, transesterification of SCG oils was carried out with methanol (v/v, 30%) and NaOH (w/v, 1%) in yield 89.2%.
Graphical Abstract |
---|---|
ISSN: | 1877-2641 1877-265X |
DOI: | 10.1007/s12649-018-0287-9 |