Loading…
Existence of Solutions to the Cauchy Problem for Some Class of Sobolev-Type Equations in the Space of Tempered Distributions
We give sufficient conditions for existence of a solution to the Cauchy problem for the equation P 1 ( D x ) ∂ t u − P 0 ( D x ) u = 0 in the space of tempered distributions.
Saved in:
Published in: | Siberian mathematical journal 2019-07, Vol.60 (4), p.644-660 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3 |
container_end_page | 660 |
container_issue | 4 |
container_start_page | 644 |
container_title | Siberian mathematical journal |
container_volume | 60 |
creator | Pavlov, A. L. |
description | We give sufficient conditions for existence of a solution to the Cauchy problem for the equation
P
1
(
D
x
)
∂
t
u
−
P
0
(
D
x
)
u
= 0 in the space of tempered distributions. |
doi_str_mv | 10.1134/S0037446619040104 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272762247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272762247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19V8NWkvZc4PGChsXpc0PXEdXdMlrTjwx5tZwQvxKpDzPO_LOQhdUnJNKRc3S0K4EkJKmhNBKBFHaEJTxZOcSXKMJodxcpiforMQNiQiROYT9Dn_qEMPrQHsLF66Zuhr1wbcO9yvAc_0YNZ7_OJd2cAWW-cjs43_jQ5hNErXwHuy2neA57tBj3rdfuvLTo_BK9h24KHCd7HN1-XYco5OrG4CXPy8U_R6P1_NHpPF88PT7HaRGE5ln1QKMsqNKHOZUUmlppVmJqOVJUoZmWZpZk2q8orbTHIrpCUshdxkcXfBmeFTdDXmdt7tBgh9sXGDb2NlwZhiSjImVKToSBnvQvBgi87XW-33BSXF4cjFnyNHh41OiGz7Bv43-X_pC6q0few</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272762247</pqid></control><display><type>article</type><title>Existence of Solutions to the Cauchy Problem for Some Class of Sobolev-Type Equations in the Space of Tempered Distributions</title><source>Springer Nature</source><creator>Pavlov, A. L.</creator><creatorcontrib>Pavlov, A. L.</creatorcontrib><description>We give sufficient conditions for existence of a solution to the Cauchy problem for the equation
P
1
(
D
x
)
∂
t
u
−
P
0
(
D
x
)
u
= 0 in the space of tempered distributions.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446619040104</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cauchy problems ; Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian mathematical journal, 2019-07, Vol.60 (4), p.644-660</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3</citedby><cites>FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlov, A. L.</creatorcontrib><title>Existence of Solutions to the Cauchy Problem for Some Class of Sobolev-Type Equations in the Space of Tempered Distributions</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We give sufficient conditions for existence of a solution to the Cauchy problem for the equation
P
1
(
D
x
)
∂
t
u
−
P
0
(
D
x
)
u
= 0 in the space of tempered distributions.</description><subject>Cauchy problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19V8NWkvZc4PGChsXpc0PXEdXdMlrTjwx5tZwQvxKpDzPO_LOQhdUnJNKRc3S0K4EkJKmhNBKBFHaEJTxZOcSXKMJodxcpiforMQNiQiROYT9Dn_qEMPrQHsLF66Zuhr1wbcO9yvAc_0YNZ7_OJd2cAWW-cjs43_jQ5hNErXwHuy2neA57tBj3rdfuvLTo_BK9h24KHCd7HN1-XYco5OrG4CXPy8U_R6P1_NHpPF88PT7HaRGE5ln1QKMsqNKHOZUUmlppVmJqOVJUoZmWZpZk2q8orbTHIrpCUshdxkcXfBmeFTdDXmdt7tBgh9sXGDb2NlwZhiSjImVKToSBnvQvBgi87XW-33BSXF4cjFnyNHh41OiGz7Bv43-X_pC6q0few</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Pavlov, A. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Existence of Solutions to the Cauchy Problem for Some Class of Sobolev-Type Equations in the Space of Tempered Distributions</title><author>Pavlov, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cauchy problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, A. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Solutions to the Cauchy Problem for Some Class of Sobolev-Type Equations in the Space of Tempered Distributions</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>60</volume><issue>4</issue><spage>644</spage><epage>660</epage><pages>644-660</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We give sufficient conditions for existence of a solution to the Cauchy problem for the equation
P
1
(
D
x
)
∂
t
u
−
P
0
(
D
x
)
u
= 0 in the space of tempered distributions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446619040104</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2019-07, Vol.60 (4), p.644-660 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2272762247 |
source | Springer Nature |
subjects | Cauchy problems Mathematics Mathematics and Statistics |
title | Existence of Solutions to the Cauchy Problem for Some Class of Sobolev-Type Equations in the Space of Tempered Distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Solutions%20to%20the%20Cauchy%20Problem%20for%20Some%20Class%20of%20Sobolev-Type%20Equations%20in%20the%20Space%20of%20Tempered%20Distributions&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Pavlov,%20A.%20L.&rft.date=2019-07-01&rft.volume=60&rft.issue=4&rft.spage=644&rft.epage=660&rft.pages=644-660&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446619040104&rft_dat=%3Cproquest_cross%3E2272762247%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-d7e813c4b9681616a1da2c81df077c65858fc579d3f863f46f025e9c8926432c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272762247&rft_id=info:pmid/&rfr_iscdi=true |