Loading…

Extending Phenomenological Crystal-Field Methods to C1 Point-Group Symmetry: Characterization of the Optically Excited Hyperfine Structure of Er1673+:Y2SiO5

We show that crystal-field calculations for C1 point-group symmetry are possible, and that such calculations can be performed with sufficient accuracy to have substantial utility for rare-earth based quantum information applications. In particular, we perform crystal-field fitting for a C1-symmetry...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-08, Vol.123 (5), p.057401
Main Authors: Horvath, S P, Rakonjac, J V, Chen, Y-H, Longdell, J Longdell, Goldner, P, Wells, J-P R, Reid, M F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that crystal-field calculations for C1 point-group symmetry are possible, and that such calculations can be performed with sufficient accuracy to have substantial utility for rare-earth based quantum information applications. In particular, we perform crystal-field fitting for a C1-symmetry site in Er1673+:Y2SiO5. The calculation simultaneously includes site-selective spectroscopic data up to 20 000  cm−1, rotational Zeeman data, and ground- and excited-state hyperfine structure determined from high-resolution Raman-heterodyne spectroscopy on the 1.5  μm telecom transition. We achieve an agreement of better than 50 MHz for assigned hyperfine transitions. The success of this analysis opens the possibility of systematically evaluating the coherence properties, as well as transition energies and intensities, of any rare-earth ion doped into Y2SiO5.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.057401