Loading…

An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature, mechanical stress and oxygen

Ultra-high temperature ceramic (UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechan...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Technological sciences 2019-08, Vol.62 (8), p.1349-1356
Main Authors: Han, XinXing, Xu, ChengHai, Jin, Hua, Xie, WeiHua, Meng, SongHe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3
cites cdi_FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3
container_end_page 1356
container_issue 8
container_start_page 1349
container_title Science China. Technological sciences
container_volume 62
creator Han, XinXing
Xu, ChengHai
Jin, Hua
Xie, WeiHua
Meng, SongHe
description Ultra-high temperature ceramic (UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB 2 -SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy (SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites.
doi_str_mv 10.1007/s11431-018-9501-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273329506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273329506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsGh_gLeAV6OZzX5kj6X4BQUveg7Z7KS7ZZutSba2_8Sfa2oFvTiXGZj3fQbmTZIrYLfAWHnnATIOlIGgVc6AwkkyAVFUFCrGTuNclBkteQrnydT7FYvFRcUgmySfM0twt0HXrdEG1RMfxmZPBkPGPjhF227ZkoDrqFBhdEh0HNad9mS0Dbq4sr4bLPFjvUIdSBiIikS77dxgD0jy0YWWYI9bFbD5i7oha9Stsp3-PuvQ--htyLDbL9FeJmdG9R6nP_0ieXu4f50_0cXL4_N8tqCaQxGoYQazkutG5XUDQhWcidrwCo0qBUImsORZDjottNAZq3jO67qpGE8NN0oofpFcH7kbN7yP6INcDaOz8aRM05LzNH60iCo4qrQbvHdo5CZ-TLm9BCYPGchjBjJmIA8ZSIie9OjxUWuX6H7J_5u-AHpwjV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273329506</pqid></control><display><type>article</type><title>An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature, mechanical stress and oxygen</title><source>Springer Nature</source><creator>Han, XinXing ; Xu, ChengHai ; Jin, Hua ; Xie, WeiHua ; Meng, SongHe</creator><creatorcontrib>Han, XinXing ; Xu, ChengHai ; Jin, Hua ; Xie, WeiHua ; Meng, SongHe</creatorcontrib><description>Ultra-high temperature ceramic (UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB 2 -SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy (SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-018-9501-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Composite materials ; Crystal pulling ; Design of experiments ; Engineering ; Graphite ; High temperature ; High temperature environments ; Mechanical properties ; Mechanical tests ; Morphology ; Organic chemistry ; Oxidation ; Oxygen ; Tensile properties ; Ultrahigh temperature</subject><ispartof>Science China. Technological sciences, 2019-08, Vol.62 (8), p.1349-1356</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3</citedby><cites>FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Han, XinXing</creatorcontrib><creatorcontrib>Xu, ChengHai</creatorcontrib><creatorcontrib>Jin, Hua</creatorcontrib><creatorcontrib>Xie, WeiHua</creatorcontrib><creatorcontrib>Meng, SongHe</creatorcontrib><title>An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature, mechanical stress and oxygen</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Ultra-high temperature ceramic (UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB 2 -SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy (SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites.</description><subject>Composite materials</subject><subject>Crystal pulling</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Graphite</subject><subject>High temperature</subject><subject>High temperature environments</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Tensile properties</subject><subject>Ultrahigh temperature</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhhdRsGh_gLeAV6OZzX5kj6X4BQUveg7Z7KS7ZZutSba2_8Sfa2oFvTiXGZj3fQbmTZIrYLfAWHnnATIOlIGgVc6AwkkyAVFUFCrGTuNclBkteQrnydT7FYvFRcUgmySfM0twt0HXrdEG1RMfxmZPBkPGPjhF227ZkoDrqFBhdEh0HNad9mS0Dbq4sr4bLPFjvUIdSBiIikS77dxgD0jy0YWWYI9bFbD5i7oha9Stsp3-PuvQ--htyLDbL9FeJmdG9R6nP_0ieXu4f50_0cXL4_N8tqCaQxGoYQazkutG5XUDQhWcidrwCo0qBUImsORZDjottNAZq3jO67qpGE8NN0oofpFcH7kbN7yP6INcDaOz8aRM05LzNH60iCo4qrQbvHdo5CZ-TLm9BCYPGchjBjJmIA8ZSIie9OjxUWuX6H7J_5u-AHpwjV0</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Han, XinXing</creator><creator>Xu, ChengHai</creator><creator>Jin, Hua</creator><creator>Xie, WeiHua</creator><creator>Meng, SongHe</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature, mechanical stress and oxygen</title><author>Han, XinXing ; Xu, ChengHai ; Jin, Hua ; Xie, WeiHua ; Meng, SongHe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Composite materials</topic><topic>Crystal pulling</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Graphite</topic><topic>High temperature</topic><topic>High temperature environments</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Tensile properties</topic><topic>Ultrahigh temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, XinXing</creatorcontrib><creatorcontrib>Xu, ChengHai</creatorcontrib><creatorcontrib>Jin, Hua</creatorcontrib><creatorcontrib>Xie, WeiHua</creatorcontrib><creatorcontrib>Meng, SongHe</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, XinXing</au><au>Xu, ChengHai</au><au>Jin, Hua</au><au>Xie, WeiHua</au><au>Meng, SongHe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature, mechanical stress and oxygen</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>62</volume><issue>8</issue><spage>1349</spage><epage>1356</epage><pages>1349-1356</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Ultra-high temperature ceramic (UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB 2 -SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy (SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-018-9501-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2019-08, Vol.62 (8), p.1349-1356
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2273329506
source Springer Nature
subjects Composite materials
Crystal pulling
Design of experiments
Engineering
Graphite
High temperature
High temperature environments
Mechanical properties
Mechanical tests
Morphology
Organic chemistry
Oxidation
Oxygen
Tensile properties
Ultrahigh temperature
title An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature, mechanical stress and oxygen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20ultra-high%20temperature%20ceramics%20under%20tension%20subject%20to%20an%20environment%20with%20elevated%20temperature,%20mechanical%20stress%20and%20oxygen&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Han,%20XinXing&rft.date=2019-08-01&rft.volume=62&rft.issue=8&rft.spage=1349&rft.epage=1356&rft.pages=1349-1356&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-018-9501-1&rft_dat=%3Cproquest_cross%3E2273329506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f0fe473cda5bd18a6308bf39efa78e148e73451c26c8c409353bbd9032f3fa8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273329506&rft_id=info:pmid/&rfr_iscdi=true