Loading…

Examples of tropical-to-Lagrangian correspondence

The paper associates Lagrangian submanifolds in symplectic toric varieties to certain tropical curves inside the convex polyhedral domains of R n that appear as the images of the moment map of the toric varieties. We pay a particular attention to the case n = 2 , where we reprove Givental’s theorem...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mathematics 2019-09, Vol.5 (3), p.1033-1066
Main Author: Mikhalkin, Grigory
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3
cites cdi_FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3
container_end_page 1066
container_issue 3
container_start_page 1033
container_title European journal of mathematics
container_volume 5
creator Mikhalkin, Grigory
description The paper associates Lagrangian submanifolds in symplectic toric varieties to certain tropical curves inside the convex polyhedral domains of R n that appear as the images of the moment map of the toric varieties. We pay a particular attention to the case n = 2 , where we reprove Givental’s theorem (Givental in Funct Anal Appl 20(3):197–203, 1986 ) on Lagrangian embeddability of non-oriented surfaces to C 2 , as well as to the case n = 3 , where we see appearance of the graph 3-manifolds studied by Waldhausen (I Invent Math 3:308–333, 1967a , II Invent Math 4:87–117, 1967b ) as Lagrangian submanifolds. In particular, rational tropical curves in R 3 produce 3-dimensional rational homology spheres. The order of their first homology groups is determined by the multiplicity of tropical curves in the corresponding enumerative problems.
doi_str_mv 10.1007/s40879-019-00319-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273334544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273334544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwVPFczSZqkR1nWP1DwouAtpHFSKt2mJl3Qb2-0ojcPM_MOvzczPELOgV4CpeoqCapVXVLIRXnu8oisGNRZKKmPf3X1fEo2KfVthpjkHMSKwO7d7qcBUxF8Mccw9c4O5RzKxnbRjl1vx8KFGDFNYXzB0eEZOfF2SLj5mWvydLN73N6VzcPt_fa6KV1-YS5FTVsqtFYUNFrlUGonrfIVOgegJbYWqpZrkJXlWjDbysoLrjyCo963fE0ulr1TDG8HTLN5DYc45pOGMcU5F5UQmWIL5WJIKaI3U-z3Nn4YoOYrHbOkY3I65jsdI7OJL6aU4bHD-Lf6H9cnNjRnBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273334544</pqid></control><display><type>article</type><title>Examples of tropical-to-Lagrangian correspondence</title><source>Springer Link</source><creator>Mikhalkin, Grigory</creator><creatorcontrib>Mikhalkin, Grigory</creatorcontrib><description>The paper associates Lagrangian submanifolds in symplectic toric varieties to certain tropical curves inside the convex polyhedral domains of R n that appear as the images of the moment map of the toric varieties. We pay a particular attention to the case n = 2 , where we reprove Givental’s theorem (Givental in Funct Anal Appl 20(3):197–203, 1986 ) on Lagrangian embeddability of non-oriented surfaces to C 2 , as well as to the case n = 3 , where we see appearance of the graph 3-manifolds studied by Waldhausen (I Invent Math 3:308–333, 1967a , II Invent Math 4:87–117, 1967b ) as Lagrangian submanifolds. In particular, rational tropical curves in R 3 produce 3-dimensional rational homology spheres. The order of their first homology groups is determined by the multiplicity of tropical curves in the corresponding enumerative problems.</description><identifier>ISSN: 2199-675X</identifier><identifier>EISSN: 2199-6768</identifier><identifier>DOI: 10.1007/s40879-019-00319-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Domains ; Homology ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Research Article</subject><ispartof>European journal of mathematics, 2019-09, Vol.5 (3), p.1033-1066</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3</citedby><cites>FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikhalkin, Grigory</creatorcontrib><title>Examples of tropical-to-Lagrangian correspondence</title><title>European journal of mathematics</title><addtitle>European Journal of Mathematics</addtitle><description>The paper associates Lagrangian submanifolds in symplectic toric varieties to certain tropical curves inside the convex polyhedral domains of R n that appear as the images of the moment map of the toric varieties. We pay a particular attention to the case n = 2 , where we reprove Givental’s theorem (Givental in Funct Anal Appl 20(3):197–203, 1986 ) on Lagrangian embeddability of non-oriented surfaces to C 2 , as well as to the case n = 3 , where we see appearance of the graph 3-manifolds studied by Waldhausen (I Invent Math 3:308–333, 1967a , II Invent Math 4:87–117, 1967b ) as Lagrangian submanifolds. In particular, rational tropical curves in R 3 produce 3-dimensional rational homology spheres. The order of their first homology groups is determined by the multiplicity of tropical curves in the corresponding enumerative problems.</description><subject>Algebraic Geometry</subject><subject>Domains</subject><subject>Homology</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><issn>2199-675X</issn><issn>2199-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouKz7BTwVPFczSZqkR1nWP1DwouAtpHFSKt2mJl3Qb2-0ojcPM_MOvzczPELOgV4CpeoqCapVXVLIRXnu8oisGNRZKKmPf3X1fEo2KfVthpjkHMSKwO7d7qcBUxF8Mccw9c4O5RzKxnbRjl1vx8KFGDFNYXzB0eEZOfF2SLj5mWvydLN73N6VzcPt_fa6KV1-YS5FTVsqtFYUNFrlUGonrfIVOgegJbYWqpZrkJXlWjDbysoLrjyCo963fE0ulr1TDG8HTLN5DYc45pOGMcU5F5UQmWIL5WJIKaI3U-z3Nn4YoOYrHbOkY3I65jsdI7OJL6aU4bHD-Lf6H9cnNjRnBA</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Mikhalkin, Grigory</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190915</creationdate><title>Examples of tropical-to-Lagrangian correspondence</title><author>Mikhalkin, Grigory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Domains</topic><topic>Homology</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><toplevel>online_resources</toplevel><creatorcontrib>Mikhalkin, Grigory</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhalkin, Grigory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examples of tropical-to-Lagrangian correspondence</atitle><jtitle>European journal of mathematics</jtitle><stitle>European Journal of Mathematics</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>1033</spage><epage>1066</epage><pages>1033-1066</pages><issn>2199-675X</issn><eissn>2199-6768</eissn><abstract>The paper associates Lagrangian submanifolds in symplectic toric varieties to certain tropical curves inside the convex polyhedral domains of R n that appear as the images of the moment map of the toric varieties. We pay a particular attention to the case n = 2 , where we reprove Givental’s theorem (Givental in Funct Anal Appl 20(3):197–203, 1986 ) on Lagrangian embeddability of non-oriented surfaces to C 2 , as well as to the case n = 3 , where we see appearance of the graph 3-manifolds studied by Waldhausen (I Invent Math 3:308–333, 1967a , II Invent Math 4:87–117, 1967b ) as Lagrangian submanifolds. In particular, rational tropical curves in R 3 produce 3-dimensional rational homology spheres. The order of their first homology groups is determined by the multiplicity of tropical curves in the corresponding enumerative problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40879-019-00319-6</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2199-675X
ispartof European journal of mathematics, 2019-09, Vol.5 (3), p.1033-1066
issn 2199-675X
2199-6768
language eng
recordid cdi_proquest_journals_2273334544
source Springer Link
subjects Algebraic Geometry
Domains
Homology
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Research Article
title Examples of tropical-to-Lagrangian correspondence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examples%20of%20tropical-to-Lagrangian%20correspondence&rft.jtitle=European%20journal%20of%20mathematics&rft.au=Mikhalkin,%20Grigory&rft.date=2019-09-15&rft.volume=5&rft.issue=3&rft.spage=1033&rft.epage=1066&rft.pages=1033-1066&rft.issn=2199-675X&rft.eissn=2199-6768&rft_id=info:doi/10.1007/s40879-019-00319-6&rft_dat=%3Cproquest_cross%3E2273334544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-490b04887018ea7ce68c6a7f5ecc1186eba15b38165a3842ab65f437fe1c0ffb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273334544&rft_id=info:pmid/&rfr_iscdi=true