Loading…

Artificial Neural Network and Multiple Linear Regression for Prediction and Classification of Sustainability of Sodium and Potassium Coronates

Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and wat...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of general chemistry 2019-07, Vol.89 (7), p.1438-1446
Main Author: Bondarev, N. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Models of multiple linear regression and multilayer artificial neural network have been developed for modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of aqueous-organic solvents (water-methanol, water-propan-2-ol, water-acetonitrile, and water-acetone). The values of the coronates stability constants in water-ethanol solvents have been predicted, and the predictions of the models of multiple linear regression and an artificial neural network models have been compared. The contributions of electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network classifiers have fully confirmed the classification of the coronated stability via the k -means exploration method.
ISSN:1070-3632
1608-3350
DOI:10.1134/S1070363219070144