Loading…
Shear Capacity of Masonry Panels Reinforced with Inorganic Strengthening Systems
Unreinforced masonry buildings are particularly vulnerable to brittle failures during seismic events due to the poor in-plane shear capacity of masonry walls. The use of strengthening solutions with polymeric matrices is not often recommended for masonry buildings, due to breathability issues, and t...
Saved in:
Published in: | Key engineering materials 2019-08, Vol.817, p.486-492 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unreinforced masonry buildings are particularly vulnerable to brittle failures during seismic events due to the poor in-plane shear capacity of masonry walls. The use of strengthening solutions with polymeric matrices is not often recommended for masonry buildings, due to breathability issues, and the adoption of inorganic matrices is sometimes considered preferable. In this paper, the use of inorganic composite materials for improving the in-plane shear capacity of tuff masonry walls is investigated. The experimental data from 83 diagonal compression tests carried out at the University of Naples Federico II in recent years have been collected and the main results are herein discussed to outline the main features of different strengthening techniques with inorganic composite materials such as Reinforced Plaster (RP), Composite Reinforced Mortar (CRM) and Fabric Reinforced Cementitious Matrix (FRCM). |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.817.486 |