Loading…
Shock wave determination of the strengthening of commercial aluminum alloy 6061 by point defects
The strengthening of aluminum alloy 6061 (AA6061) by different point defects was determined experimentally using a shock wave technique. Decay of the amplitude of elastic precursor wave τel with propagation distance h was studied in four groups of AA6061 samples, namely, that in the super-saturated...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138066, Article 138066 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The strengthening of aluminum alloy 6061 (AA6061) by different point defects was determined experimentally using a shock wave technique. Decay of the amplitude of elastic precursor wave τel with propagation distance h was studied in four groups of AA6061 samples, namely, that in the super-saturated solid solution state (SSSS), and those strengthened by atomic clusters (short-range order), by Guinier-Preston zones I and by Guinier-Preston zones II after, respectively 7.5, 240 and 960 min aging of the SSSS samples at 145 °C. The dependences τel(h) were found to be kinked at stress τ*, corresponding to the transition of the control of dislocation motion from phonon viscous drag at τel>τ* to thermally activated obstacle passage at τel |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2019.138066 |