Loading…

Hydrogen transport by dislocation movement in austenitic steel

Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138059, Article 138059
Main Authors: Pu, S.D., Ooi, S.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943
cites cdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943
container_end_page
container_issue
container_start_page 138059
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 761
creator Pu, S.D.
Ooi, S.W.
description Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.
doi_str_mv 10.1016/j.msea.2019.138059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2274333265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319308457</els_id><sourcerecordid>2274333265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz62Tj6YNiCCirrDgRc8hm0wlZdusSXZh_71d6tnTzOF93hkeQm4pVBSovO-rIaGpGFBVUd5Crc7IgrYNL4Xi8pwsQDFa1qD4JblKqQcAKqBekMfV0cXwjWORoxnTLsRcbI6F82kbrMk-jMUQDjjgmAs_FmafMo4-e1tMC26vyUVntglv_uaSfL2-fD6vyvXH2_vz07q0nLW5bCzYxnJoGdsIqSzraiNqhg2XDpzqsAWOXApEiqo1EpwVjZOCNqKrN0rwJbmbe3cx_OwxZd2HfRynk5qxRnDOmaynFJtTNoaUInZ6F_1g4lFT0CdPutcnT_rkSc-eJuhhhnD6_-Ax6mQ9jhadj2izdsH_h_8C5BBwog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274333265</pqid></control><display><type>article</type><title>Hydrogen transport by dislocation movement in austenitic steel</title><source>ScienceDirect Journals</source><creator>Pu, S.D. ; Ooi, S.W.</creator><creatorcontrib>Pu, S.D. ; Ooi, S.W.</creatorcontrib><description>Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138059</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Dislocation movement ; Edge dislocations ; Hydrogen ; Hydrogen atoms ; Hydrogen diffusion ; Hydrogen embrittlement ; Hydrogen storage ; Microprint technique ; Plastic deformation</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138059, Article 138059</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 22, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</citedby><cites>FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27925,27926</link.rule.ids></links><search><creatorcontrib>Pu, S.D.</creatorcontrib><creatorcontrib>Ooi, S.W.</creatorcontrib><title>Hydrogen transport by dislocation movement in austenitic steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.</description><subject>Austenitic stainless steels</subject><subject>Dislocation movement</subject><subject>Edge dislocations</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen diffusion</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen storage</subject><subject>Microprint technique</subject><subject>Plastic deformation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz62Tj6YNiCCirrDgRc8hm0wlZdusSXZh_71d6tnTzOF93hkeQm4pVBSovO-rIaGpGFBVUd5Crc7IgrYNL4Xi8pwsQDFa1qD4JblKqQcAKqBekMfV0cXwjWORoxnTLsRcbI6F82kbrMk-jMUQDjjgmAs_FmafMo4-e1tMC26vyUVntglv_uaSfL2-fD6vyvXH2_vz07q0nLW5bCzYxnJoGdsIqSzraiNqhg2XDpzqsAWOXApEiqo1EpwVjZOCNqKrN0rwJbmbe3cx_OwxZd2HfRynk5qxRnDOmaynFJtTNoaUInZ6F_1g4lFT0CdPutcnT_rkSc-eJuhhhnD6_-Ax6mQ9jhadj2izdsH_h_8C5BBwog</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Pu, S.D.</creator><creator>Ooi, S.W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190722</creationdate><title>Hydrogen transport by dislocation movement in austenitic steel</title><author>Pu, S.D. ; Ooi, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Dislocation movement</topic><topic>Edge dislocations</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen diffusion</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen storage</topic><topic>Microprint technique</topic><topic>Plastic deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, S.D.</creatorcontrib><creatorcontrib>Ooi, S.W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, S.D.</au><au>Ooi, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen transport by dislocation movement in austenitic steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>761</volume><spage>138059</spage><pages>138059-</pages><artnum>138059</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138059</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138059, Article 138059
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2274333265
source ScienceDirect Journals
subjects Austenitic stainless steels
Dislocation movement
Edge dislocations
Hydrogen
Hydrogen atoms
Hydrogen diffusion
Hydrogen embrittlement
Hydrogen storage
Microprint technique
Plastic deformation
title Hydrogen transport by dislocation movement in austenitic steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20transport%20by%20dislocation%20movement%20in%20austenitic%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Pu,%20S.D.&rft.date=2019-07-22&rft.volume=761&rft.spage=138059&rft.pages=138059-&rft.artnum=138059&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138059&rft_dat=%3Cproquest_cross%3E2274333265%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274333265&rft_id=info:pmid/&rfr_iscdi=true