Loading…
Hydrogen transport by dislocation movement in austenitic steel
Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138059, Article 138059 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943 |
container_end_page | |
container_issue | |
container_start_page | 138059 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 761 |
creator | Pu, S.D. Ooi, S.W. |
description | Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation. |
doi_str_mv | 10.1016/j.msea.2019.138059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2274333265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319308457</els_id><sourcerecordid>2274333265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz62Tj6YNiCCirrDgRc8hm0wlZdusSXZh_71d6tnTzOF93hkeQm4pVBSovO-rIaGpGFBVUd5Crc7IgrYNL4Xi8pwsQDFa1qD4JblKqQcAKqBekMfV0cXwjWORoxnTLsRcbI6F82kbrMk-jMUQDjjgmAs_FmafMo4-e1tMC26vyUVntglv_uaSfL2-fD6vyvXH2_vz07q0nLW5bCzYxnJoGdsIqSzraiNqhg2XDpzqsAWOXApEiqo1EpwVjZOCNqKrN0rwJbmbe3cx_OwxZd2HfRynk5qxRnDOmaynFJtTNoaUInZ6F_1g4lFT0CdPutcnT_rkSc-eJuhhhnD6_-Ax6mQ9jhadj2izdsH_h_8C5BBwog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274333265</pqid></control><display><type>article</type><title>Hydrogen transport by dislocation movement in austenitic steel</title><source>ScienceDirect Journals</source><creator>Pu, S.D. ; Ooi, S.W.</creator><creatorcontrib>Pu, S.D. ; Ooi, S.W.</creatorcontrib><description>Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138059</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Dislocation movement ; Edge dislocations ; Hydrogen ; Hydrogen atoms ; Hydrogen diffusion ; Hydrogen embrittlement ; Hydrogen storage ; Microprint technique ; Plastic deformation</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138059, Article 138059</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 22, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</citedby><cites>FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27925,27926</link.rule.ids></links><search><creatorcontrib>Pu, S.D.</creatorcontrib><creatorcontrib>Ooi, S.W.</creatorcontrib><title>Hydrogen transport by dislocation movement in austenitic steel</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.</description><subject>Austenitic stainless steels</subject><subject>Dislocation movement</subject><subject>Edge dislocations</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen diffusion</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen storage</subject><subject>Microprint technique</subject><subject>Plastic deformation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz62Tj6YNiCCirrDgRc8hm0wlZdusSXZh_71d6tnTzOF93hkeQm4pVBSovO-rIaGpGFBVUd5Crc7IgrYNL4Xi8pwsQDFa1qD4JblKqQcAKqBekMfV0cXwjWORoxnTLsRcbI6F82kbrMk-jMUQDjjgmAs_FmafMo4-e1tMC26vyUVntglv_uaSfL2-fD6vyvXH2_vz07q0nLW5bCzYxnJoGdsIqSzraiNqhg2XDpzqsAWOXApEiqo1EpwVjZOCNqKrN0rwJbmbe3cx_OwxZd2HfRynk5qxRnDOmaynFJtTNoaUInZ6F_1g4lFT0CdPutcnT_rkSc-eJuhhhnD6_-Ax6mQ9jhadj2izdsH_h_8C5BBwog</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Pu, S.D.</creator><creator>Ooi, S.W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190722</creationdate><title>Hydrogen transport by dislocation movement in austenitic steel</title><author>Pu, S.D. ; Ooi, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Dislocation movement</topic><topic>Edge dislocations</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen diffusion</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen storage</topic><topic>Microprint technique</topic><topic>Plastic deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, S.D.</creatorcontrib><creatorcontrib>Ooi, S.W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, S.D.</au><au>Ooi, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen transport by dislocation movement in austenitic steel</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>761</volume><spage>138059</spage><pages>138059-</pages><artnum>138059</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Hydrogen movement within an austenitic stainless steel has been investigated by microprint technique. Hydrogen atoms show strong preferential segregation along slip bands for the hydrogen-charged then compressed specimens. Such segregation was not observed in other test conditions. This result gives strong support to the theory that dislocations act as hydrogen traps and trapped hydrogen atoms move with them during plastic deformation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138059</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-07, Vol.761, p.138059, Article 138059 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2274333265 |
source | ScienceDirect Journals |
subjects | Austenitic stainless steels Dislocation movement Edge dislocations Hydrogen Hydrogen atoms Hydrogen diffusion Hydrogen embrittlement Hydrogen storage Microprint technique Plastic deformation |
title | Hydrogen transport by dislocation movement in austenitic steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20transport%20by%20dislocation%20movement%20in%20austenitic%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Pu,%20S.D.&rft.date=2019-07-22&rft.volume=761&rft.spage=138059&rft.pages=138059-&rft.artnum=138059&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138059&rft_dat=%3Cproquest_cross%3E2274333265%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-7c0c7c30822b469c2f5a452e736d0d9fe803e364ee1e98a60dc47d64174f5b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274333265&rft_id=info:pmid/&rfr_iscdi=true |