Loading…
The effects of froth depth and impeller speed on gas dispersion properties and metallurgical performance of an industrial self-aerated flotation machine
In self-aerated flotation machines, the gas rate depends on operational variables {e.g. froth depth and impeller speed), pulp properties (e.g. solid content and viscosity), and reagent addition (e.g. type and concentration of frother). The gas rate has a strong correlation with the flotation perform...
Saved in:
Published in: | Journal of the South African Institute of Mining and Metallurgy 2019-07, Vol.119 (7), p.661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-10bbb2257e4977cc692aa588e0c38025bbedeb20d900a2a1a811c7ba062145863 |
---|---|
cites | |
container_end_page | |
container_issue | 7 |
container_start_page | 661 |
container_title | Journal of the South African Institute of Mining and Metallurgy |
container_volume | 119 |
creator | Naghavi, H. Dehghani, A. Karimi, M. |
description | In self-aerated flotation machines, the gas rate depends on operational variables {e.g. froth depth and impeller speed), pulp properties (e.g. solid content and viscosity), and reagent addition (e.g. type and concentration of frother). The gas rate has a strong correlation with the flotation performance by influencing the gas dispersion properties and froth retention time. A factorial experimental design was used to study how the gas dispersion properties, the froth retention time, and the flotation performance respond to changes in froth depth and impeller speed (as the most common operational variables). An in-depth understanding of the effects of impeller speed and froth depth on the gas dispersion properties, especially the bubble surface area flux and froth retention time, is necessary to improve operating strategies for self-aerated flotation machines. All experiments were carried out in a 50 m3 self-aerated flotation cell in an iron ore processing plant. The results showed that the froth depth affected the metallurgical performance mostly via changing the froth retention time. The impeller speed had two important impacts on the metallurgical performance via varying both the froth retention time and the bubble surface area flux in the froth and pulp zones, respectively. The interaction effects of the froth depth and impeller speed were also established. This allowed us to develop a strategy for operating self-aerated flotation machines based on varying the froth depth and impeller speed with regard to the cell duty. |
doi_str_mv | 10.17159/2411-9717/244/2019 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2274338269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2274338269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-10bbb2257e4977cc692aa588e0c38025bbedeb20d900a2a1a811c7ba062145863</originalsourceid><addsrcrecordid>eNo9kctq3jAQhU1poCHNE3Qj6NqNbpbsZQlpGwhk0WQtRvIoVpAvlWRC36SPWzl_2o10hjl84ug0zSdGvzDNuuGKS8baQTNdlbzilA3vmnPOedcq3on3Vf8zfGguc36mlHIuldT6vPnzMCFB79GVTFZPfFrLREbc6gnLSMK8YYyYSN4QR7Iu5AkyGUMdUw513NJaZQmYX_0zFohxT0_BQSR149c0w-LwgMNCwjLuuaRQlxmjbwETlAr2cS1QDuAMbgoLfmzOPMSMl2_3RfP47ebh-kd7d__99vrrXeuk0KVl1Fpbo2qUg9bOqYEDdH2P1Ime8s5aHNFyOg6UAgcGPWNOW6CKM9n1Slw0P0_c_ILbbs2Wwgzpt1khmIQZIbnJuAniXAObjAY99bJjo0GluJGOcmOlkIZaYI4pPQihK_XziVq_59eOuZjndU9LDWI411KInquhusTJ5dKac0L__3VGzWu35qjOHNVVJc3RrfgLGGKZWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274338269</pqid></control><display><type>article</type><title>The effects of froth depth and impeller speed on gas dispersion properties and metallurgical performance of an industrial self-aerated flotation machine</title><source>EZB Electronic Journals Library</source><creator>Naghavi, H. ; Dehghani, A. ; Karimi, M.</creator><creatorcontrib>Naghavi, H. ; Dehghani, A. ; Karimi, M.</creatorcontrib><description>In self-aerated flotation machines, the gas rate depends on operational variables {e.g. froth depth and impeller speed), pulp properties (e.g. solid content and viscosity), and reagent addition (e.g. type and concentration of frother). The gas rate has a strong correlation with the flotation performance by influencing the gas dispersion properties and froth retention time. A factorial experimental design was used to study how the gas dispersion properties, the froth retention time, and the flotation performance respond to changes in froth depth and impeller speed (as the most common operational variables). An in-depth understanding of the effects of impeller speed and froth depth on the gas dispersion properties, especially the bubble surface area flux and froth retention time, is necessary to improve operating strategies for self-aerated flotation machines. All experiments were carried out in a 50 m3 self-aerated flotation cell in an iron ore processing plant. The results showed that the froth depth affected the metallurgical performance mostly via changing the froth retention time. The impeller speed had two important impacts on the metallurgical performance via varying both the froth retention time and the bubble surface area flux in the froth and pulp zones, respectively. The interaction effects of the froth depth and impeller speed were also established. This allowed us to develop a strategy for operating self-aerated flotation machines based on varying the froth depth and impeller speed with regard to the cell duty.</description><identifier>ISSN: 2411-9717</identifier><identifier>ISSN: 0038-223X</identifier><identifier>ISSN: 2225-6253</identifier><identifier>EISSN: 2225-6253</identifier><identifier>EISSN: 2411-9717</identifier><identifier>DOI: 10.17159/2411-9717/244/2019</identifier><language>eng</language><publisher>Johannesburg: South African Institute of Mining and Metallurgy</publisher><subject>Aeration ; Design of experiments ; Dispersion ; Flotation machines ; froth depth ; gas dispersion properties ; impeller speed ; Impellers ; Iron ores ; metallurgical performance ; Metallurgy ; Properties (attributes) ; Reagents ; Retention ; self-aerated flotation machine ; Surface area</subject><ispartof>Journal of the South African Institute of Mining and Metallurgy, 2019-07, Vol.119 (7), p.661</ispartof><rights>Copyright South African Institute of Mining and Metallurgy Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-10bbb2257e4977cc692aa588e0c38025bbedeb20d900a2a1a811c7ba062145863</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/512463$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Naghavi, H.</creatorcontrib><creatorcontrib>Dehghani, A.</creatorcontrib><creatorcontrib>Karimi, M.</creatorcontrib><title>The effects of froth depth and impeller speed on gas dispersion properties and metallurgical performance of an industrial self-aerated flotation machine</title><title>Journal of the South African Institute of Mining and Metallurgy</title><description>In self-aerated flotation machines, the gas rate depends on operational variables {e.g. froth depth and impeller speed), pulp properties (e.g. solid content and viscosity), and reagent addition (e.g. type and concentration of frother). The gas rate has a strong correlation with the flotation performance by influencing the gas dispersion properties and froth retention time. A factorial experimental design was used to study how the gas dispersion properties, the froth retention time, and the flotation performance respond to changes in froth depth and impeller speed (as the most common operational variables). An in-depth understanding of the effects of impeller speed and froth depth on the gas dispersion properties, especially the bubble surface area flux and froth retention time, is necessary to improve operating strategies for self-aerated flotation machines. All experiments were carried out in a 50 m3 self-aerated flotation cell in an iron ore processing plant. The results showed that the froth depth affected the metallurgical performance mostly via changing the froth retention time. The impeller speed had two important impacts on the metallurgical performance via varying both the froth retention time and the bubble surface area flux in the froth and pulp zones, respectively. The interaction effects of the froth depth and impeller speed were also established. This allowed us to develop a strategy for operating self-aerated flotation machines based on varying the froth depth and impeller speed with regard to the cell duty.</description><subject>Aeration</subject><subject>Design of experiments</subject><subject>Dispersion</subject><subject>Flotation machines</subject><subject>froth depth</subject><subject>gas dispersion properties</subject><subject>impeller speed</subject><subject>Impellers</subject><subject>Iron ores</subject><subject>metallurgical performance</subject><subject>Metallurgy</subject><subject>Properties (attributes)</subject><subject>Reagents</subject><subject>Retention</subject><subject>self-aerated flotation machine</subject><subject>Surface area</subject><issn>2411-9717</issn><issn>0038-223X</issn><issn>2225-6253</issn><issn>2225-6253</issn><issn>2411-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kctq3jAQhU1poCHNE3Qj6NqNbpbsZQlpGwhk0WQtRvIoVpAvlWRC36SPWzl_2o10hjl84ug0zSdGvzDNuuGKS8baQTNdlbzilA3vmnPOedcq3on3Vf8zfGguc36mlHIuldT6vPnzMCFB79GVTFZPfFrLREbc6gnLSMK8YYyYSN4QR7Iu5AkyGUMdUw513NJaZQmYX_0zFohxT0_BQSR149c0w-LwgMNCwjLuuaRQlxmjbwETlAr2cS1QDuAMbgoLfmzOPMSMl2_3RfP47ebh-kd7d__99vrrXeuk0KVl1Fpbo2qUg9bOqYEDdH2P1Ime8s5aHNFyOg6UAgcGPWNOW6CKM9n1Slw0P0_c_ILbbs2Wwgzpt1khmIQZIbnJuAniXAObjAY99bJjo0GluJGOcmOlkIZaYI4pPQihK_XziVq_59eOuZjndU9LDWI411KInquhusTJ5dKac0L__3VGzWu35qjOHNVVJc3RrfgLGGKZWQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Naghavi, H.</creator><creator>Dehghani, A.</creator><creator>Karimi, M.</creator><general>South African Institute of Mining and Metallurgy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope></search><sort><creationdate>20190701</creationdate><title>The effects of froth depth and impeller speed on gas dispersion properties and metallurgical performance of an industrial self-aerated flotation machine</title><author>Naghavi, H. ; Dehghani, A. ; Karimi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-10bbb2257e4977cc692aa588e0c38025bbedeb20d900a2a1a811c7ba062145863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aeration</topic><topic>Design of experiments</topic><topic>Dispersion</topic><topic>Flotation machines</topic><topic>froth depth</topic><topic>gas dispersion properties</topic><topic>impeller speed</topic><topic>Impellers</topic><topic>Iron ores</topic><topic>metallurgical performance</topic><topic>Metallurgy</topic><topic>Properties (attributes)</topic><topic>Reagents</topic><topic>Retention</topic><topic>self-aerated flotation machine</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naghavi, H.</creatorcontrib><creatorcontrib>Dehghani, A.</creatorcontrib><creatorcontrib>Karimi, M.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><jtitle>Journal of the South African Institute of Mining and Metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naghavi, H.</au><au>Dehghani, A.</au><au>Karimi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of froth depth and impeller speed on gas dispersion properties and metallurgical performance of an industrial self-aerated flotation machine</atitle><jtitle>Journal of the South African Institute of Mining and Metallurgy</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>119</volume><issue>7</issue><spage>661</spage><pages>661-</pages><issn>2411-9717</issn><issn>0038-223X</issn><issn>2225-6253</issn><eissn>2225-6253</eissn><eissn>2411-9717</eissn><abstract>In self-aerated flotation machines, the gas rate depends on operational variables {e.g. froth depth and impeller speed), pulp properties (e.g. solid content and viscosity), and reagent addition (e.g. type and concentration of frother). The gas rate has a strong correlation with the flotation performance by influencing the gas dispersion properties and froth retention time. A factorial experimental design was used to study how the gas dispersion properties, the froth retention time, and the flotation performance respond to changes in froth depth and impeller speed (as the most common operational variables). An in-depth understanding of the effects of impeller speed and froth depth on the gas dispersion properties, especially the bubble surface area flux and froth retention time, is necessary to improve operating strategies for self-aerated flotation machines. All experiments were carried out in a 50 m3 self-aerated flotation cell in an iron ore processing plant. The results showed that the froth depth affected the metallurgical performance mostly via changing the froth retention time. The impeller speed had two important impacts on the metallurgical performance via varying both the froth retention time and the bubble surface area flux in the froth and pulp zones, respectively. The interaction effects of the froth depth and impeller speed were also established. This allowed us to develop a strategy for operating self-aerated flotation machines based on varying the froth depth and impeller speed with regard to the cell duty.</abstract><cop>Johannesburg</cop><pub>South African Institute of Mining and Metallurgy</pub><doi>10.17159/2411-9717/244/2019</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2411-9717 |
ispartof | Journal of the South African Institute of Mining and Metallurgy, 2019-07, Vol.119 (7), p.661 |
issn | 2411-9717 0038-223X 2225-6253 2225-6253 2411-9717 |
language | eng |
recordid | cdi_proquest_journals_2274338269 |
source | EZB Electronic Journals Library |
subjects | Aeration Design of experiments Dispersion Flotation machines froth depth gas dispersion properties impeller speed Impellers Iron ores metallurgical performance Metallurgy Properties (attributes) Reagents Retention self-aerated flotation machine Surface area |
title | The effects of froth depth and impeller speed on gas dispersion properties and metallurgical performance of an industrial self-aerated flotation machine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20froth%20depth%20and%20impeller%20speed%20on%20gas%20dispersion%20properties%20and%20metallurgical%20performance%20of%20an%20industrial%20self-aerated%20flotation%20machine&rft.jtitle=Journal%20of%20the%20South%20African%20Institute%20of%20Mining%20and%20Metallurgy&rft.au=Naghavi,%20H.&rft.date=2019-07-01&rft.volume=119&rft.issue=7&rft.spage=661&rft.pages=661-&rft.issn=2411-9717&rft.eissn=2225-6253&rft_id=info:doi/10.17159/2411-9717/244/2019&rft_dat=%3Cproquest_swepu%3E2274338269%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-10bbb2257e4977cc692aa588e0c38025bbedeb20d900a2a1a811c7ba062145863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274338269&rft_id=info:pmid/&rfr_iscdi=true |