Loading…
Facilitating the Quantitative Analysis of Complex Events through a Computational Intelligence Model-Driven Tool
Complex event processing (CEP) is a computational intelligence technology capable of analyzing big data streams for event pattern recognition in real time. In particular, this technology is vastly useful for analyzing multicriteria conditions in a pattern, which will trigger alerts (complex events)...
Saved in:
Published in: | Scientific programming 2019, Vol.2019 (2019), p.1-17 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23 |
container_end_page | 17 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2019 |
creator | Boubeta-Puig, Juan Valero, Valentín Macià, Hermenegilda Díaz, Gregorio Ortiz, Guadalupe |
description | Complex event processing (CEP) is a computational intelligence technology capable of analyzing big data streams for event pattern recognition in real time. In particular, this technology is vastly useful for analyzing multicriteria conditions in a pattern, which will trigger alerts (complex events) upon their fulfillment. However, one of the main challenges to be faced by CEP is how to define the quantitative analysis to be performed in response to the produced complex events. In this paper, we propose the use of the MEdit4CEP-CPN model-driven tool as a solution for conducting such quantitative analysis of events of interest for an application domain, without requiring knowledge of any scientific programming language for implementing the pattern conditions. Precisely, MEdit4CEP-CPN facilitates domain experts to graphically model event patterns, transform them into a Prioritized Colored Petri Net (PCPN) model, modify its initial marking depending on the application scenario, and make the quantitative analysis through the simulation and monitor capabilities provided by CPN tools. |
doi_str_mv | 10.1155/2019/2604148 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2274645094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2274645094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCs7pzbMEPGpdXposzXHMTQeKCBO8lbR93Tq6ZibtdN_ebB149JSQ_N7jvX8QXAN9ABBiwCioARtSDjw-CXoQSxEqUJ-n_k5FHCrG-Xlw4dyKUoiB0l5gpjorq7LRTVkvSLNE8t7qujk8bJGMal3tXOmIKcjYrDcV_pDJFuvGeWtNu1gSffho9wXGazKrG6yqcoF1huTV5FiFj9b3qsncmOoyOCt05fDqePaDj-lkPn4OX96eZuPRS5hFQ9qEAuKsUBSwQOAMQOci4ixScigRBEOh4lTmueDS7408zSIm0xhASUxpkbGoH9x2fTfWfLXommRlWuvncwljkg-5oIp7dd-pzBrnLBbJxpZrbXcJ0GQfabKPNDlG6vldx5dlnevv8j9902n0Bgv9pxlQyeLoFxS1gCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274645094</pqid></control><display><type>article</type><title>Facilitating the Quantitative Analysis of Complex Events through a Computational Intelligence Model-Driven Tool</title><source>Wiley-Blackwell Open Access Collection</source><creator>Boubeta-Puig, Juan ; Valero, Valentín ; Macià, Hermenegilda ; Díaz, Gregorio ; Ortiz, Guadalupe</creator><contributor>Rubio-Largo, Alvaro ; Alvaro Rubio-Largo</contributor><creatorcontrib>Boubeta-Puig, Juan ; Valero, Valentín ; Macià, Hermenegilda ; Díaz, Gregorio ; Ortiz, Guadalupe ; Rubio-Largo, Alvaro ; Alvaro Rubio-Largo</creatorcontrib><description>Complex event processing (CEP) is a computational intelligence technology capable of analyzing big data streams for event pattern recognition in real time. In particular, this technology is vastly useful for analyzing multicriteria conditions in a pattern, which will trigger alerts (complex events) upon their fulfillment. However, one of the main challenges to be faced by CEP is how to define the quantitative analysis to be performed in response to the produced complex events. In this paper, we propose the use of the MEdit4CEP-CPN model-driven tool as a solution for conducting such quantitative analysis of events of interest for an application domain, without requiring knowledge of any scientific programming language for implementing the pattern conditions. Precisely, MEdit4CEP-CPN facilitates domain experts to graphically model event patterns, transform them into a Prioritized Colored Petri Net (PCPN) model, modify its initial marking depending on the application scenario, and make the quantitative analysis through the simulation and monitor capabilities provided by CPN tools.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2019/2604148</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial intelligence ; Big Data ; Computer simulation ; Data transmission ; Engineering ; Intelligence ; International conferences ; Multiple criterion ; Pattern recognition ; Petri nets ; Programming languages ; Quantitative analysis ; Semantics ; Software ; Subject specialists ; Technology assessment</subject><ispartof>Scientific programming, 2019, Vol.2019 (2019), p.1-17</ispartof><rights>Copyright © 2019 Gregorio Díaz et al.</rights><rights>Copyright © 2019 Gregorio Díaz et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23</citedby><cites>FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23</cites><orcidid>0000-0002-8989-7509 ; 0000-0003-3462-7656 ; 0000-0002-5121-6341 ; 0000-0002-9116-9535 ; 0000-0003-1462-5274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Rubio-Largo, Alvaro</contributor><contributor>Alvaro Rubio-Largo</contributor><creatorcontrib>Boubeta-Puig, Juan</creatorcontrib><creatorcontrib>Valero, Valentín</creatorcontrib><creatorcontrib>Macià, Hermenegilda</creatorcontrib><creatorcontrib>Díaz, Gregorio</creatorcontrib><creatorcontrib>Ortiz, Guadalupe</creatorcontrib><title>Facilitating the Quantitative Analysis of Complex Events through a Computational Intelligence Model-Driven Tool</title><title>Scientific programming</title><description>Complex event processing (CEP) is a computational intelligence technology capable of analyzing big data streams for event pattern recognition in real time. In particular, this technology is vastly useful for analyzing multicriteria conditions in a pattern, which will trigger alerts (complex events) upon their fulfillment. However, one of the main challenges to be faced by CEP is how to define the quantitative analysis to be performed in response to the produced complex events. In this paper, we propose the use of the MEdit4CEP-CPN model-driven tool as a solution for conducting such quantitative analysis of events of interest for an application domain, without requiring knowledge of any scientific programming language for implementing the pattern conditions. Precisely, MEdit4CEP-CPN facilitates domain experts to graphically model event patterns, transform them into a Prioritized Colored Petri Net (PCPN) model, modify its initial marking depending on the application scenario, and make the quantitative analysis through the simulation and monitor capabilities provided by CPN tools.</description><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Computer simulation</subject><subject>Data transmission</subject><subject>Engineering</subject><subject>Intelligence</subject><subject>International conferences</subject><subject>Multiple criterion</subject><subject>Pattern recognition</subject><subject>Petri nets</subject><subject>Programming languages</subject><subject>Quantitative analysis</subject><subject>Semantics</subject><subject>Software</subject><subject>Subject specialists</subject><subject>Technology assessment</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AiCs7pzbMEPGpdXposzXHMTQeKCBO8lbR93Tq6ZibtdN_ebB149JSQ_N7jvX8QXAN9ABBiwCioARtSDjw-CXoQSxEqUJ-n_k5FHCrG-Xlw4dyKUoiB0l5gpjorq7LRTVkvSLNE8t7qujk8bJGMal3tXOmIKcjYrDcV_pDJFuvGeWtNu1gSffho9wXGazKrG6yqcoF1huTV5FiFj9b3qsncmOoyOCt05fDqePaDj-lkPn4OX96eZuPRS5hFQ9qEAuKsUBSwQOAMQOci4ixScigRBEOh4lTmueDS7408zSIm0xhASUxpkbGoH9x2fTfWfLXommRlWuvncwljkg-5oIp7dd-pzBrnLBbJxpZrbXcJ0GQfabKPNDlG6vldx5dlnevv8j9902n0Bgv9pxlQyeLoFxS1gCQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Boubeta-Puig, Juan</creator><creator>Valero, Valentín</creator><creator>Macià, Hermenegilda</creator><creator>Díaz, Gregorio</creator><creator>Ortiz, Guadalupe</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8989-7509</orcidid><orcidid>https://orcid.org/0000-0003-3462-7656</orcidid><orcidid>https://orcid.org/0000-0002-5121-6341</orcidid><orcidid>https://orcid.org/0000-0002-9116-9535</orcidid><orcidid>https://orcid.org/0000-0003-1462-5274</orcidid></search><sort><creationdate>2019</creationdate><title>Facilitating the Quantitative Analysis of Complex Events through a Computational Intelligence Model-Driven Tool</title><author>Boubeta-Puig, Juan ; Valero, Valentín ; Macià, Hermenegilda ; Díaz, Gregorio ; Ortiz, Guadalupe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Computer simulation</topic><topic>Data transmission</topic><topic>Engineering</topic><topic>Intelligence</topic><topic>International conferences</topic><topic>Multiple criterion</topic><topic>Pattern recognition</topic><topic>Petri nets</topic><topic>Programming languages</topic><topic>Quantitative analysis</topic><topic>Semantics</topic><topic>Software</topic><topic>Subject specialists</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boubeta-Puig, Juan</creatorcontrib><creatorcontrib>Valero, Valentín</creatorcontrib><creatorcontrib>Macià, Hermenegilda</creatorcontrib><creatorcontrib>Díaz, Gregorio</creatorcontrib><creatorcontrib>Ortiz, Guadalupe</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boubeta-Puig, Juan</au><au>Valero, Valentín</au><au>Macià, Hermenegilda</au><au>Díaz, Gregorio</au><au>Ortiz, Guadalupe</au><au>Rubio-Largo, Alvaro</au><au>Alvaro Rubio-Largo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facilitating the Quantitative Analysis of Complex Events through a Computational Intelligence Model-Driven Tool</atitle><jtitle>Scientific programming</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Complex event processing (CEP) is a computational intelligence technology capable of analyzing big data streams for event pattern recognition in real time. In particular, this technology is vastly useful for analyzing multicriteria conditions in a pattern, which will trigger alerts (complex events) upon their fulfillment. However, one of the main challenges to be faced by CEP is how to define the quantitative analysis to be performed in response to the produced complex events. In this paper, we propose the use of the MEdit4CEP-CPN model-driven tool as a solution for conducting such quantitative analysis of events of interest for an application domain, without requiring knowledge of any scientific programming language for implementing the pattern conditions. Precisely, MEdit4CEP-CPN facilitates domain experts to graphically model event patterns, transform them into a Prioritized Colored Petri Net (PCPN) model, modify its initial marking depending on the application scenario, and make the quantitative analysis through the simulation and monitor capabilities provided by CPN tools.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2604148</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8989-7509</orcidid><orcidid>https://orcid.org/0000-0003-3462-7656</orcidid><orcidid>https://orcid.org/0000-0002-5121-6341</orcidid><orcidid>https://orcid.org/0000-0002-9116-9535</orcidid><orcidid>https://orcid.org/0000-0003-1462-5274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2019, Vol.2019 (2019), p.1-17 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2274645094 |
source | Wiley-Blackwell Open Access Collection |
subjects | Artificial intelligence Big Data Computer simulation Data transmission Engineering Intelligence International conferences Multiple criterion Pattern recognition Petri nets Programming languages Quantitative analysis Semantics Software Subject specialists Technology assessment |
title | Facilitating the Quantitative Analysis of Complex Events through a Computational Intelligence Model-Driven Tool |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facilitating%20the%20Quantitative%20Analysis%20of%20Complex%20Events%20through%20a%20Computational%20Intelligence%20Model-Driven%20Tool&rft.jtitle=Scientific%20programming&rft.au=Boubeta-Puig,%20Juan&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2019/2604148&rft_dat=%3Cproquest_cross%3E2274645094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-518cf901efe14211ad534239767e152e598b7dd547155e4bc327b81197eb0fc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2274645094&rft_id=info:pmid/&rfr_iscdi=true |