Loading…
Distilling On-Device Intelligence at the Network Edge
Devices at the edge of wireless networks are the last mile data sources for machine learning (ML). As opposed to traditional ready-made public datasets, these user-generated private datasets reflect the freshest local environments in real time. They are thus indispensable for enabling mission-critic...
Saved in:
Published in: | arXiv.org 2019-08 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Park, Jihong Wang, Shiqiang Elgabli, Anis Oh, Seungeun Jeong, Eunjeong Cha, Han Kim, Hyesung Kim, Seong-Lyun Bennis, Mehdi |
description | Devices at the edge of wireless networks are the last mile data sources for machine learning (ML). As opposed to traditional ready-made public datasets, these user-generated private datasets reflect the freshest local environments in real time. They are thus indispensable for enabling mission-critical intelligent systems, ranging from fog radio access networks (RANs) to driverless cars and e-Health wearables. This article focuses on how to distill high-quality on-device ML models using fog computing, from such user-generated private data dispersed across wirelessly connected devices. To this end, we introduce communication-efficient and privacy-preserving distributed ML frameworks, termed fog ML (FML), wherein on-device ML models are trained by exchanging model parameters, model outputs, and surrogate data. We then present advanced FML frameworks addressing wireless RAN characteristics, limited on-device resources, and imbalanced data distributions. Our study suggests that the full potential of FML can be reached by co-designing communication and distributed ML operations while accounting for heterogeneous hardware specifications, data characteristics, and user requirements. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2275731011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275731011</sourcerecordid><originalsourceid>FETCH-proquest_journals_22757310113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcksLsnMycnMS1fwz9N1SS3LTE5V8MwrSQWKpafmATmJJQolGakKfqkl5flF2QquKempPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RkbmpubGhgaGhMnCoAT500SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275731011</pqid></control><display><type>article</type><title>Distilling On-Device Intelligence at the Network Edge</title><source>Publicly Available Content Database</source><creator>Park, Jihong ; Wang, Shiqiang ; Elgabli, Anis ; Oh, Seungeun ; Jeong, Eunjeong ; Cha, Han ; Kim, Hyesung ; Kim, Seong-Lyun ; Bennis, Mehdi</creator><creatorcontrib>Park, Jihong ; Wang, Shiqiang ; Elgabli, Anis ; Oh, Seungeun ; Jeong, Eunjeong ; Cha, Han ; Kim, Hyesung ; Kim, Seong-Lyun ; Bennis, Mehdi</creatorcontrib><description>Devices at the edge of wireless networks are the last mile data sources for machine learning (ML). As opposed to traditional ready-made public datasets, these user-generated private datasets reflect the freshest local environments in real time. They are thus indispensable for enabling mission-critical intelligent systems, ranging from fog radio access networks (RANs) to driverless cars and e-Health wearables. This article focuses on how to distill high-quality on-device ML models using fog computing, from such user-generated private data dispersed across wirelessly connected devices. To this end, we introduce communication-efficient and privacy-preserving distributed ML frameworks, termed fog ML (FML), wherein on-device ML models are trained by exchanging model parameters, model outputs, and surrogate data. We then present advanced FML frameworks addressing wireless RAN characteristics, limited on-device resources, and imbalanced data distributions. Our study suggests that the full potential of FML can be reached by co-designing communication and distributed ML operations while accounting for heterogeneous hardware specifications, data characteristics, and user requirements.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous cars ; Cloud computing ; Datasets ; Distillation ; Electronic devices ; Machine learning ; User requirements ; Wireless networks</subject><ispartof>arXiv.org, 2019-08</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2275731011?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Park, Jihong</creatorcontrib><creatorcontrib>Wang, Shiqiang</creatorcontrib><creatorcontrib>Elgabli, Anis</creatorcontrib><creatorcontrib>Oh, Seungeun</creatorcontrib><creatorcontrib>Jeong, Eunjeong</creatorcontrib><creatorcontrib>Cha, Han</creatorcontrib><creatorcontrib>Kim, Hyesung</creatorcontrib><creatorcontrib>Kim, Seong-Lyun</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><title>Distilling On-Device Intelligence at the Network Edge</title><title>arXiv.org</title><description>Devices at the edge of wireless networks are the last mile data sources for machine learning (ML). As opposed to traditional ready-made public datasets, these user-generated private datasets reflect the freshest local environments in real time. They are thus indispensable for enabling mission-critical intelligent systems, ranging from fog radio access networks (RANs) to driverless cars and e-Health wearables. This article focuses on how to distill high-quality on-device ML models using fog computing, from such user-generated private data dispersed across wirelessly connected devices. To this end, we introduce communication-efficient and privacy-preserving distributed ML frameworks, termed fog ML (FML), wherein on-device ML models are trained by exchanging model parameters, model outputs, and surrogate data. We then present advanced FML frameworks addressing wireless RAN characteristics, limited on-device resources, and imbalanced data distributions. Our study suggests that the full potential of FML can be reached by co-designing communication and distributed ML operations while accounting for heterogeneous hardware specifications, data characteristics, and user requirements.</description><subject>Autonomous cars</subject><subject>Cloud computing</subject><subject>Datasets</subject><subject>Distillation</subject><subject>Electronic devices</subject><subject>Machine learning</subject><subject>User requirements</subject><subject>Wireless networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcksLsnMycnMS1fwz9N1SS3LTE5V8MwrSQWKpafmATmJJQolGakKfqkl5flF2QquKempPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RkbmpubGhgaGhMnCoAT500SQ</recordid><startdate>20190816</startdate><enddate>20190816</enddate><creator>Park, Jihong</creator><creator>Wang, Shiqiang</creator><creator>Elgabli, Anis</creator><creator>Oh, Seungeun</creator><creator>Jeong, Eunjeong</creator><creator>Cha, Han</creator><creator>Kim, Hyesung</creator><creator>Kim, Seong-Lyun</creator><creator>Bennis, Mehdi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190816</creationdate><title>Distilling On-Device Intelligence at the Network Edge</title><author>Park, Jihong ; Wang, Shiqiang ; Elgabli, Anis ; Oh, Seungeun ; Jeong, Eunjeong ; Cha, Han ; Kim, Hyesung ; Kim, Seong-Lyun ; Bennis, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22757310113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autonomous cars</topic><topic>Cloud computing</topic><topic>Datasets</topic><topic>Distillation</topic><topic>Electronic devices</topic><topic>Machine learning</topic><topic>User requirements</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Jihong</creatorcontrib><creatorcontrib>Wang, Shiqiang</creatorcontrib><creatorcontrib>Elgabli, Anis</creatorcontrib><creatorcontrib>Oh, Seungeun</creatorcontrib><creatorcontrib>Jeong, Eunjeong</creatorcontrib><creatorcontrib>Cha, Han</creatorcontrib><creatorcontrib>Kim, Hyesung</creatorcontrib><creatorcontrib>Kim, Seong-Lyun</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jihong</au><au>Wang, Shiqiang</au><au>Elgabli, Anis</au><au>Oh, Seungeun</au><au>Jeong, Eunjeong</au><au>Cha, Han</au><au>Kim, Hyesung</au><au>Kim, Seong-Lyun</au><au>Bennis, Mehdi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distilling On-Device Intelligence at the Network Edge</atitle><jtitle>arXiv.org</jtitle><date>2019-08-16</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Devices at the edge of wireless networks are the last mile data sources for machine learning (ML). As opposed to traditional ready-made public datasets, these user-generated private datasets reflect the freshest local environments in real time. They are thus indispensable for enabling mission-critical intelligent systems, ranging from fog radio access networks (RANs) to driverless cars and e-Health wearables. This article focuses on how to distill high-quality on-device ML models using fog computing, from such user-generated private data dispersed across wirelessly connected devices. To this end, we introduce communication-efficient and privacy-preserving distributed ML frameworks, termed fog ML (FML), wherein on-device ML models are trained by exchanging model parameters, model outputs, and surrogate data. We then present advanced FML frameworks addressing wireless RAN characteristics, limited on-device resources, and imbalanced data distributions. Our study suggests that the full potential of FML can be reached by co-designing communication and distributed ML operations while accounting for heterogeneous hardware specifications, data characteristics, and user requirements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2275731011 |
source | Publicly Available Content Database |
subjects | Autonomous cars Cloud computing Datasets Distillation Electronic devices Machine learning User requirements Wireless networks |
title | Distilling On-Device Intelligence at the Network Edge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distilling%20On-Device%20Intelligence%20at%20the%20Network%20Edge&rft.jtitle=arXiv.org&rft.au=Park,%20Jihong&rft.date=2019-08-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2275731011%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22757310113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275731011&rft_id=info:pmid/&rfr_iscdi=true |