Loading…
Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning
Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspire...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Orbes-Arteaga, Mauricio Varsavsky, Thomas Sudre, Carole H Eaton-Rosen, Zach Haddow, Lewis J Sørensen, Lauge Nielsen, Mads Pai, Akshay Ourselin, Sébastien Modat, Marc Nachev, Parashkev Cardoso, M Jorge |
description | Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2275735272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275735272</sourcerecordid><originalsourceid>FETCH-proquest_journals_22757352723</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMgWLT_EHBdqDfGuNWqKFgQceGuXGxsU2pS8xD8eyv4Aa6GOXNmQCJgbJYs5wAjEjvXpGkKCwGcs4hc89B6lWzMA5WmqxI7j14ZTfu2tl-Wnw_U19aEqqYnVFaWNDPaKeelvr0p6rK_vaR1aBW29CjRaqWrCRnesXUy_uWYTHfbS7ZPOmueQTpfNCZY3U8FgOCCcRDA_rM-RepBag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275735272</pqid></control><display><type>article</type><title>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</title><source>Publicly Available Content Database</source><creator>Orbes-Arteaga, Mauricio ; Varsavsky, Thomas ; Sudre, Carole H ; Eaton-Rosen, Zach ; Haddow, Lewis J ; Sørensen, Lauge ; Nielsen, Mads ; Pai, Akshay ; Ourselin, Sébastien ; Modat, Marc ; Nachev, Parashkev ; Cardoso, M Jorge</creator><creatorcontrib>Orbes-Arteaga, Mauricio ; Varsavsky, Thomas ; Sudre, Carole H ; Eaton-Rosen, Zach ; Haddow, Lewis J ; Sørensen, Lauge ; Nielsen, Mads ; Pai, Akshay ; Ourselin, Sébastien ; Modat, Marc ; Nachev, Parashkev ; Cardoso, M Jorge</creatorcontrib><description>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Algorithms ; Brain ; Consistency ; Domains ; Image acquisition ; Image segmentation ; Machine learning ; Medical imaging</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2275735272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Orbes-Arteaga, Mauricio</creatorcontrib><creatorcontrib>Varsavsky, Thomas</creatorcontrib><creatorcontrib>Sudre, Carole H</creatorcontrib><creatorcontrib>Eaton-Rosen, Zach</creatorcontrib><creatorcontrib>Haddow, Lewis J</creatorcontrib><creatorcontrib>Sørensen, Lauge</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Pai, Akshay</creatorcontrib><creatorcontrib>Ourselin, Sébastien</creatorcontrib><creatorcontrib>Modat, Marc</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><creatorcontrib>Cardoso, M Jorge</creatorcontrib><title>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</title><title>arXiv.org</title><description>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Consistency</subject><subject>Domains</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sKwjAURIMgWLT_EHBdqDfGuNWqKFgQceGuXGxsU2pS8xD8eyv4Aa6GOXNmQCJgbJYs5wAjEjvXpGkKCwGcs4hc89B6lWzMA5WmqxI7j14ZTfu2tl-Wnw_U19aEqqYnVFaWNDPaKeelvr0p6rK_vaR1aBW29CjRaqWrCRnesXUy_uWYTHfbS7ZPOmueQTpfNCZY3U8FgOCCcRDA_rM-RepBag</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>Orbes-Arteaga, Mauricio</creator><creator>Varsavsky, Thomas</creator><creator>Sudre, Carole H</creator><creator>Eaton-Rosen, Zach</creator><creator>Haddow, Lewis J</creator><creator>Sørensen, Lauge</creator><creator>Nielsen, Mads</creator><creator>Pai, Akshay</creator><creator>Ourselin, Sébastien</creator><creator>Modat, Marc</creator><creator>Nachev, Parashkev</creator><creator>Cardoso, M Jorge</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190917</creationdate><title>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</title><author>Orbes-Arteaga, Mauricio ; Varsavsky, Thomas ; Sudre, Carole H ; Eaton-Rosen, Zach ; Haddow, Lewis J ; Sørensen, Lauge ; Nielsen, Mads ; Pai, Akshay ; Ourselin, Sébastien ; Modat, Marc ; Nachev, Parashkev ; Cardoso, M Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22757352723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Consistency</topic><topic>Domains</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Orbes-Arteaga, Mauricio</creatorcontrib><creatorcontrib>Varsavsky, Thomas</creatorcontrib><creatorcontrib>Sudre, Carole H</creatorcontrib><creatorcontrib>Eaton-Rosen, Zach</creatorcontrib><creatorcontrib>Haddow, Lewis J</creatorcontrib><creatorcontrib>Sørensen, Lauge</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Pai, Akshay</creatorcontrib><creatorcontrib>Ourselin, Sébastien</creatorcontrib><creatorcontrib>Modat, Marc</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><creatorcontrib>Cardoso, M Jorge</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orbes-Arteaga, Mauricio</au><au>Varsavsky, Thomas</au><au>Sudre, Carole H</au><au>Eaton-Rosen, Zach</au><au>Haddow, Lewis J</au><au>Sørensen, Lauge</au><au>Nielsen, Mads</au><au>Pai, Akshay</au><au>Ourselin, Sébastien</au><au>Modat, Marc</au><au>Nachev, Parashkev</au><au>Cardoso, M Jorge</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</atitle><jtitle>arXiv.org</jtitle><date>2019-09-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2275735272 |
source | Publicly Available Content Database |
subjects | Adaptation Algorithms Brain Consistency Domains Image acquisition Image segmentation Machine learning Medical imaging |
title | Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Domain%20Adaptation%20in%20Brain%20MRI%20through%20Paired%20Consistency%20and%20Adversarial%20Learning&rft.jtitle=arXiv.org&rft.au=Orbes-Arteaga,%20Mauricio&rft.date=2019-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2275735272%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22757352723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275735272&rft_id=info:pmid/&rfr_iscdi=true |