Loading…

Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning

Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspire...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-09
Main Authors: Orbes-Arteaga, Mauricio, Varsavsky, Thomas, Sudre, Carole H, Eaton-Rosen, Zach, Haddow, Lewis J, Sørensen, Lauge, Nielsen, Mads, Pai, Akshay, Ourselin, Sébastien, Modat, Marc, Nachev, Parashkev, Cardoso, M Jorge
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Orbes-Arteaga, Mauricio
Varsavsky, Thomas
Sudre, Carole H
Eaton-Rosen, Zach
Haddow, Lewis J
Sørensen, Lauge
Nielsen, Mads
Pai, Akshay
Ourselin, Sébastien
Modat, Marc
Nachev, Parashkev
Cardoso, M Jorge
description Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2275735272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275735272</sourcerecordid><originalsourceid>FETCH-proquest_journals_22757352723</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMgWLT_EHBdqDfGuNWqKFgQceGuXGxsU2pS8xD8eyv4Aa6GOXNmQCJgbJYs5wAjEjvXpGkKCwGcs4hc89B6lWzMA5WmqxI7j14ZTfu2tl-Wnw_U19aEqqYnVFaWNDPaKeelvr0p6rK_vaR1aBW29CjRaqWrCRnesXUy_uWYTHfbS7ZPOmueQTpfNCZY3U8FgOCCcRDA_rM-RepBag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275735272</pqid></control><display><type>article</type><title>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</title><source>Publicly Available Content Database</source><creator>Orbes-Arteaga, Mauricio ; Varsavsky, Thomas ; Sudre, Carole H ; Eaton-Rosen, Zach ; Haddow, Lewis J ; Sørensen, Lauge ; Nielsen, Mads ; Pai, Akshay ; Ourselin, Sébastien ; Modat, Marc ; Nachev, Parashkev ; Cardoso, M Jorge</creator><creatorcontrib>Orbes-Arteaga, Mauricio ; Varsavsky, Thomas ; Sudre, Carole H ; Eaton-Rosen, Zach ; Haddow, Lewis J ; Sørensen, Lauge ; Nielsen, Mads ; Pai, Akshay ; Ourselin, Sébastien ; Modat, Marc ; Nachev, Parashkev ; Cardoso, M Jorge</creatorcontrib><description>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Algorithms ; Brain ; Consistency ; Domains ; Image acquisition ; Image segmentation ; Machine learning ; Medical imaging</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2275735272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Orbes-Arteaga, Mauricio</creatorcontrib><creatorcontrib>Varsavsky, Thomas</creatorcontrib><creatorcontrib>Sudre, Carole H</creatorcontrib><creatorcontrib>Eaton-Rosen, Zach</creatorcontrib><creatorcontrib>Haddow, Lewis J</creatorcontrib><creatorcontrib>Sørensen, Lauge</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Pai, Akshay</creatorcontrib><creatorcontrib>Ourselin, Sébastien</creatorcontrib><creatorcontrib>Modat, Marc</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><creatorcontrib>Cardoso, M Jorge</creatorcontrib><title>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</title><title>arXiv.org</title><description>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Consistency</subject><subject>Domains</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sKwjAURIMgWLT_EHBdqDfGuNWqKFgQceGuXGxsU2pS8xD8eyv4Aa6GOXNmQCJgbJYs5wAjEjvXpGkKCwGcs4hc89B6lWzMA5WmqxI7j14ZTfu2tl-Wnw_U19aEqqYnVFaWNDPaKeelvr0p6rK_vaR1aBW29CjRaqWrCRnesXUy_uWYTHfbS7ZPOmueQTpfNCZY3U8FgOCCcRDA_rM-RepBag</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>Orbes-Arteaga, Mauricio</creator><creator>Varsavsky, Thomas</creator><creator>Sudre, Carole H</creator><creator>Eaton-Rosen, Zach</creator><creator>Haddow, Lewis J</creator><creator>Sørensen, Lauge</creator><creator>Nielsen, Mads</creator><creator>Pai, Akshay</creator><creator>Ourselin, Sébastien</creator><creator>Modat, Marc</creator><creator>Nachev, Parashkev</creator><creator>Cardoso, M Jorge</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190917</creationdate><title>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</title><author>Orbes-Arteaga, Mauricio ; Varsavsky, Thomas ; Sudre, Carole H ; Eaton-Rosen, Zach ; Haddow, Lewis J ; Sørensen, Lauge ; Nielsen, Mads ; Pai, Akshay ; Ourselin, Sébastien ; Modat, Marc ; Nachev, Parashkev ; Cardoso, M Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22757352723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Consistency</topic><topic>Domains</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Orbes-Arteaga, Mauricio</creatorcontrib><creatorcontrib>Varsavsky, Thomas</creatorcontrib><creatorcontrib>Sudre, Carole H</creatorcontrib><creatorcontrib>Eaton-Rosen, Zach</creatorcontrib><creatorcontrib>Haddow, Lewis J</creatorcontrib><creatorcontrib>Sørensen, Lauge</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Pai, Akshay</creatorcontrib><creatorcontrib>Ourselin, Sébastien</creatorcontrib><creatorcontrib>Modat, Marc</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><creatorcontrib>Cardoso, M Jorge</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orbes-Arteaga, Mauricio</au><au>Varsavsky, Thomas</au><au>Sudre, Carole H</au><au>Eaton-Rosen, Zach</au><au>Haddow, Lewis J</au><au>Sørensen, Lauge</au><au>Nielsen, Mads</au><au>Pai, Akshay</au><au>Ourselin, Sébastien</au><au>Modat, Marc</au><au>Nachev, Parashkev</au><au>Cardoso, M Jorge</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning</atitle><jtitle>arXiv.org</jtitle><date>2019-09-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to \(n\) target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2275735272
source Publicly Available Content Database
subjects Adaptation
Algorithms
Brain
Consistency
Domains
Image acquisition
Image segmentation
Machine learning
Medical imaging
title Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Domain%20Adaptation%20in%20Brain%20MRI%20through%20Paired%20Consistency%20and%20Adversarial%20Learning&rft.jtitle=arXiv.org&rft.au=Orbes-Arteaga,%20Mauricio&rft.date=2019-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2275735272%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22757352723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275735272&rft_id=info:pmid/&rfr_iscdi=true