Loading…

Serum metabolomics can predict the outcome of first systematic transrectal prostate biopsy in patients with PSA <10 ng/ml

To assess the predictive value of metabolomic analysis for the presence of prostate cancer (PCa) at first systematic biopsy. Ninety serum samples from patients with suspicion for PCa were included. Targeted and nontargeted metabolomic analysis was performed. Six metabolites were combined into a pred...

Full description

Saved in:
Bibliographic Details
Published in:Future oncology (London, England) England), 2017-08, Vol.13 (20), p.1793-1800
Main Authors: Andras, Iulia, Crisan, Nicolae, Vesa, Stefan, Rahota, Razvan, Romanciuc, Florina, Lazar, Andrei, Socaciu, Carmen, Matei, Deliu-Victor, de Cobelli, Ottavio, Bocsan, Ioan-Stelian, Coman, Radu-Tudor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3
cites cdi_FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3
container_end_page 1800
container_issue 20
container_start_page 1793
container_title Future oncology (London, England)
container_volume 13
creator Andras, Iulia
Crisan, Nicolae
Vesa, Stefan
Rahota, Razvan
Romanciuc, Florina
Lazar, Andrei
Socaciu, Carmen
Matei, Deliu-Victor
de Cobelli, Ottavio
Bocsan, Ioan-Stelian
Coman, Radu-Tudor
description To assess the predictive value of metabolomic analysis for the presence of prostate cancer (PCa) at first systematic biopsy. Ninety serum samples from patients with suspicion for PCa were included. Targeted and nontargeted metabolomic analysis was performed. Six metabolites were combined into a predictive score. A cutoff value of 0.528 for the metabolomic score showed a good accuracy for the prediction of PCa at biopsy (Area under the curve (AUC): 0.779; p < 0.001). These results were validated in a subgroup of patients, showing similar accuracy (p = 0.1). For patients with prostate specific antigen (PSA) less than 10 ng/ml, the score showed a Se 80.95%, Sp 64.52% for the detection of PCa at biopsy. Metabolomic analysis can predict the outcome of the first systematic biopsy.
doi_str_mv 10.2217/fon-2017-0078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2275875184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275875184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3</originalsourceid><addsrcrecordid>eNp1kEtLJDEURoM4-BqXbiXgujRJpSopcCPijELDDDizDnnc2Gk6VW2SQvrfm6bVnaubx8l3cw9CF5RcM0bFjZ_GhhEqGkKEPEAnVHDeyJbQw7rmYmj6fuDH6DTnFSFctB05QsdMCtFzRk_Q9hnSHHGEos20nmKwGVs94k0CF2zBZQl4moudYq0e-5BywXmbC0RdgsUl6TEnsEWv65spF10AmzBt8haHGlMhGEvGb6Es8d_nO3xLCR5fbuL6J_rh9TrD-Uc9Q_9_Pfy7f2wWf34_3d8tGtsKWhoNmhrR-qFz9QDIIK30zjHfM8056U29Ik5KOXSdFR04I1vPrGldy4w2rj1DV_vc-r3XGXJRq2lOY22pGBOdFB2VvFLNnrJ1iDqQV5sUok5bRYnaiVZVtNqJVjvRlb_8SJ1NBPdFf5qtwLAH_FzmBNlWDxbUfhd3csMI34S_Ax43juI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275875184</pqid></control><display><type>article</type><title>Serum metabolomics can predict the outcome of first systematic transrectal prostate biopsy in patients with PSA &lt;10 ng/ml</title><source>PubMed Central</source><creator>Andras, Iulia ; Crisan, Nicolae ; Vesa, Stefan ; Rahota, Razvan ; Romanciuc, Florina ; Lazar, Andrei ; Socaciu, Carmen ; Matei, Deliu-Victor ; de Cobelli, Ottavio ; Bocsan, Ioan-Stelian ; Coman, Radu-Tudor</creator><creatorcontrib>Andras, Iulia ; Crisan, Nicolae ; Vesa, Stefan ; Rahota, Razvan ; Romanciuc, Florina ; Lazar, Andrei ; Socaciu, Carmen ; Matei, Deliu-Victor ; de Cobelli, Ottavio ; Bocsan, Ioan-Stelian ; Coman, Radu-Tudor</creatorcontrib><description>To assess the predictive value of metabolomic analysis for the presence of prostate cancer (PCa) at first systematic biopsy. Ninety serum samples from patients with suspicion for PCa were included. Targeted and nontargeted metabolomic analysis was performed. Six metabolites were combined into a predictive score. A cutoff value of 0.528 for the metabolomic score showed a good accuracy for the prediction of PCa at biopsy (Area under the curve (AUC): 0.779; p &lt; 0.001). These results were validated in a subgroup of patients, showing similar accuracy (p = 0.1). For patients with prostate specific antigen (PSA) less than 10 ng/ml, the score showed a Se 80.95%, Sp 64.52% for the detection of PCa at biopsy. Metabolomic analysis can predict the outcome of the first systematic biopsy.</description><identifier>ISSN: 1479-6694</identifier><identifier>EISSN: 1744-8301</identifier><identifier>DOI: 10.2217/fon-2017-0078</identifier><identifier>PMID: 28776421</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Accuracy ; Aged ; Amino acids ; Antigens ; Biomarkers ; Biopsy ; Diagnosis, Differential ; Discriminant analysis ; Humans ; Male ; Medical screening ; Metabolites ; Metabolome ; metabolomics ; Metabolomics - methods ; Middle Aged ; Mortality ; NMR ; Nuclear magnetic resonance ; Patients ; prediction score ; Prognosis ; Prostate cancer ; Prostate-Specific Antigen - blood ; Prostatic Neoplasms - blood ; Prostatic Neoplasms - diagnosis ; ROC Curve ; Software ; Systematic review ; Ultrasonic imaging ; Variables</subject><ispartof>Future oncology (London, England), 2017-08, Vol.13 (20), p.1793-1800</ispartof><rights>2017 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3</citedby><cites>FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28776421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andras, Iulia</creatorcontrib><creatorcontrib>Crisan, Nicolae</creatorcontrib><creatorcontrib>Vesa, Stefan</creatorcontrib><creatorcontrib>Rahota, Razvan</creatorcontrib><creatorcontrib>Romanciuc, Florina</creatorcontrib><creatorcontrib>Lazar, Andrei</creatorcontrib><creatorcontrib>Socaciu, Carmen</creatorcontrib><creatorcontrib>Matei, Deliu-Victor</creatorcontrib><creatorcontrib>de Cobelli, Ottavio</creatorcontrib><creatorcontrib>Bocsan, Ioan-Stelian</creatorcontrib><creatorcontrib>Coman, Radu-Tudor</creatorcontrib><title>Serum metabolomics can predict the outcome of first systematic transrectal prostate biopsy in patients with PSA &lt;10 ng/ml</title><title>Future oncology (London, England)</title><addtitle>Future Oncol</addtitle><description>To assess the predictive value of metabolomic analysis for the presence of prostate cancer (PCa) at first systematic biopsy. Ninety serum samples from patients with suspicion for PCa were included. Targeted and nontargeted metabolomic analysis was performed. Six metabolites were combined into a predictive score. A cutoff value of 0.528 for the metabolomic score showed a good accuracy for the prediction of PCa at biopsy (Area under the curve (AUC): 0.779; p &lt; 0.001). These results were validated in a subgroup of patients, showing similar accuracy (p = 0.1). For patients with prostate specific antigen (PSA) less than 10 ng/ml, the score showed a Se 80.95%, Sp 64.52% for the detection of PCa at biopsy. Metabolomic analysis can predict the outcome of the first systematic biopsy.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Amino acids</subject><subject>Antigens</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Diagnosis, Differential</subject><subject>Discriminant analysis</subject><subject>Humans</subject><subject>Male</subject><subject>Medical screening</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>prediction score</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatic Neoplasms - blood</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>ROC Curve</subject><subject>Software</subject><subject>Systematic review</subject><subject>Ultrasonic imaging</subject><subject>Variables</subject><issn>1479-6694</issn><issn>1744-8301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLJDEURoM4-BqXbiXgujRJpSopcCPijELDDDizDnnc2Gk6VW2SQvrfm6bVnaubx8l3cw9CF5RcM0bFjZ_GhhEqGkKEPEAnVHDeyJbQw7rmYmj6fuDH6DTnFSFctB05QsdMCtFzRk_Q9hnSHHGEos20nmKwGVs94k0CF2zBZQl4moudYq0e-5BywXmbC0RdgsUl6TEnsEWv65spF10AmzBt8haHGlMhGEvGb6Es8d_nO3xLCR5fbuL6J_rh9TrD-Uc9Q_9_Pfy7f2wWf34_3d8tGtsKWhoNmhrR-qFz9QDIIK30zjHfM8056U29Ik5KOXSdFR04I1vPrGldy4w2rj1DV_vc-r3XGXJRq2lOY22pGBOdFB2VvFLNnrJ1iDqQV5sUok5bRYnaiVZVtNqJVjvRlb_8SJ1NBPdFf5qtwLAH_FzmBNlWDxbUfhd3csMI34S_Ax43juI</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Andras, Iulia</creator><creator>Crisan, Nicolae</creator><creator>Vesa, Stefan</creator><creator>Rahota, Razvan</creator><creator>Romanciuc, Florina</creator><creator>Lazar, Andrei</creator><creator>Socaciu, Carmen</creator><creator>Matei, Deliu-Victor</creator><creator>de Cobelli, Ottavio</creator><creator>Bocsan, Ioan-Stelian</creator><creator>Coman, Radu-Tudor</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170801</creationdate><title>Serum metabolomics can predict the outcome of first systematic transrectal prostate biopsy in patients with PSA &lt;10 ng/ml</title><author>Andras, Iulia ; Crisan, Nicolae ; Vesa, Stefan ; Rahota, Razvan ; Romanciuc, Florina ; Lazar, Andrei ; Socaciu, Carmen ; Matei, Deliu-Victor ; de Cobelli, Ottavio ; Bocsan, Ioan-Stelian ; Coman, Radu-Tudor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Amino acids</topic><topic>Antigens</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Diagnosis, Differential</topic><topic>Discriminant analysis</topic><topic>Humans</topic><topic>Male</topic><topic>Medical screening</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>prediction score</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatic Neoplasms - blood</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>ROC Curve</topic><topic>Software</topic><topic>Systematic review</topic><topic>Ultrasonic imaging</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andras, Iulia</creatorcontrib><creatorcontrib>Crisan, Nicolae</creatorcontrib><creatorcontrib>Vesa, Stefan</creatorcontrib><creatorcontrib>Rahota, Razvan</creatorcontrib><creatorcontrib>Romanciuc, Florina</creatorcontrib><creatorcontrib>Lazar, Andrei</creatorcontrib><creatorcontrib>Socaciu, Carmen</creatorcontrib><creatorcontrib>Matei, Deliu-Victor</creatorcontrib><creatorcontrib>de Cobelli, Ottavio</creatorcontrib><creatorcontrib>Bocsan, Ioan-Stelian</creatorcontrib><creatorcontrib>Coman, Radu-Tudor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Future oncology (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andras, Iulia</au><au>Crisan, Nicolae</au><au>Vesa, Stefan</au><au>Rahota, Razvan</au><au>Romanciuc, Florina</au><au>Lazar, Andrei</au><au>Socaciu, Carmen</au><au>Matei, Deliu-Victor</au><au>de Cobelli, Ottavio</au><au>Bocsan, Ioan-Stelian</au><au>Coman, Radu-Tudor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serum metabolomics can predict the outcome of first systematic transrectal prostate biopsy in patients with PSA &lt;10 ng/ml</atitle><jtitle>Future oncology (London, England)</jtitle><addtitle>Future Oncol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>13</volume><issue>20</issue><spage>1793</spage><epage>1800</epage><pages>1793-1800</pages><issn>1479-6694</issn><eissn>1744-8301</eissn><abstract>To assess the predictive value of metabolomic analysis for the presence of prostate cancer (PCa) at first systematic biopsy. Ninety serum samples from patients with suspicion for PCa were included. Targeted and nontargeted metabolomic analysis was performed. Six metabolites were combined into a predictive score. A cutoff value of 0.528 for the metabolomic score showed a good accuracy for the prediction of PCa at biopsy (Area under the curve (AUC): 0.779; p &lt; 0.001). These results were validated in a subgroup of patients, showing similar accuracy (p = 0.1). For patients with prostate specific antigen (PSA) less than 10 ng/ml, the score showed a Se 80.95%, Sp 64.52% for the detection of PCa at biopsy. Metabolomic analysis can predict the outcome of the first systematic biopsy.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>28776421</pmid><doi>10.2217/fon-2017-0078</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1479-6694
ispartof Future oncology (London, England), 2017-08, Vol.13 (20), p.1793-1800
issn 1479-6694
1744-8301
language eng
recordid cdi_proquest_journals_2275875184
source PubMed Central
subjects Accuracy
Aged
Amino acids
Antigens
Biomarkers
Biopsy
Diagnosis, Differential
Discriminant analysis
Humans
Male
Medical screening
Metabolites
Metabolome
metabolomics
Metabolomics - methods
Middle Aged
Mortality
NMR
Nuclear magnetic resonance
Patients
prediction score
Prognosis
Prostate cancer
Prostate-Specific Antigen - blood
Prostatic Neoplasms - blood
Prostatic Neoplasms - diagnosis
ROC Curve
Software
Systematic review
Ultrasonic imaging
Variables
title Serum metabolomics can predict the outcome of first systematic transrectal prostate biopsy in patients with PSA <10 ng/ml
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serum%20metabolomics%20can%20predict%20the%20outcome%20of%20first%20systematic%20transrectal%20prostate%20biopsy%20in%20patients%20with%20PSA%20%3C10%20ng/ml&rft.jtitle=Future%20oncology%20(London,%20England)&rft.au=Andras,%20Iulia&rft.date=2017-08-01&rft.volume=13&rft.issue=20&rft.spage=1793&rft.epage=1800&rft.pages=1793-1800&rft.issn=1479-6694&rft.eissn=1744-8301&rft_id=info:doi/10.2217/fon-2017-0078&rft_dat=%3Cproquest_cross%3E2275875184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-aea1b73f95dc37e098c8fdd2f62a4406b3f90d888955c75edb83f2cb3d32babd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275875184&rft_id=info:pmid/28776421&rfr_iscdi=true