Loading…
Pharmacomicrobiomics informs clinical pharmacogenomics
Microbiota–host–xenobiotics interactions in humans become of prime interest when clinical pharmacogenomics is to be implemented. Despite the advent of technology, information still needs to be translated into knowledge for optimum patient stratification and disease management. Herein, we mined metag...
Saved in:
Published in: | Pharmacogenomics 2019-07, Vol.20 (10), p.731-739 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3 |
container_end_page | 739 |
container_issue | 10 |
container_start_page | 731 |
container_title | Pharmacogenomics |
container_volume | 20 |
creator | Katsila, Theodora Balasopoulou, Angeliki Tsagaraki, Ioanna Patrinos, George P |
description | Microbiota–host–xenobiotics interactions in humans become of prime interest when clinical pharmacogenomics is to be implemented. Despite the advent of technology, information still needs to be translated into knowledge for optimum patient stratification and disease management.
Herein, we mined metagenomic, pharmacometagenomic and pharmacomicrobiomic datasets to map microbiota–host–drugs networks.
Datasets were multifaceted and voluminous. Interoperability, data sparsity and scarcity remain a challenge. Mapping microbiota–host–drugs networks allowed the prediction of drug response/toxicity and modulation of the microbiota–host–drugs interplay.
Our approach triangulated microbiota, host and drug networks revealing the need for contextual data and open science via microattribution to accelerate knowledge growth. Our findings may serve as a data storehouse for a user-friendly query system, coupled with databanks and databases. |
doi_str_mv | 10.2217/pgs-2019-0027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276802279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2276802279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUwsqJKzAaf49jJiCq-pEowwGw5zrm4aj6wm4F_j0MKG4vPJz1-7_wQcgnshnNQt_0mUs6gpIxxdUTmoISgBRP8ON2F5JQLkDNyFuM2ESAFOyWzDDJZFALmRL5-mNAY2zXehq7yY41L37ouNHFpd7711uyW_YHaYPtDnJMTZ3YRLw51Qd4f7t9WT3T98vi8ultTmynYU5VJHCfx3AohlaqUZcxWIKtSGsgFQ2l5jWl9a_IcSiixLlxuMuBYO-GyBbmecvvQfQ4Y93rbDaFNIzXnShYsnWWi6ESlL8QY0Ok--MaELw1Mj5Z0sqRHS3q0lPirQ-pQNVj_0b9aElBOgBv2Q8BoPbYW9dSlF976Fv8J_wZe4XXK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276802279</pqid></control><display><type>article</type><title>Pharmacomicrobiomics informs clinical pharmacogenomics</title><source>PubMed (Medline)</source><creator>Katsila, Theodora ; Balasopoulou, Angeliki ; Tsagaraki, Ioanna ; Patrinos, George P</creator><creatorcontrib>Katsila, Theodora ; Balasopoulou, Angeliki ; Tsagaraki, Ioanna ; Patrinos, George P</creatorcontrib><description>Microbiota–host–xenobiotics interactions in humans become of prime interest when clinical pharmacogenomics is to be implemented. Despite the advent of technology, information still needs to be translated into knowledge for optimum patient stratification and disease management.
Herein, we mined metagenomic, pharmacometagenomic and pharmacomicrobiomic datasets to map microbiota–host–drugs networks.
Datasets were multifaceted and voluminous. Interoperability, data sparsity and scarcity remain a challenge. Mapping microbiota–host–drugs networks allowed the prediction of drug response/toxicity and modulation of the microbiota–host–drugs interplay.
Our approach triangulated microbiota, host and drug networks revealing the need for contextual data and open science via microattribution to accelerate knowledge growth. Our findings may serve as a data storehouse for a user-friendly query system, coupled with databanks and databases.</description><identifier>ISSN: 1462-2416</identifier><identifier>EISSN: 1744-8042</identifier><identifier>DOI: 10.2217/pgs-2019-0027</identifier><identifier>PMID: 31368841</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Antibiotics ; Citation indexes ; Collaboration ; Content analysis ; contextual data ; Data banks ; Databases, Factual ; Drug-Related Side Effects and Adverse Reactions - genetics ; Drugs ; Ecosystems ; Genomes ; Genomics ; Health care ; Host Microbial Interactions - genetics ; Humans ; metagenomics ; Microbiota ; Microbiota - physiology ; microbiota–host–xenobiotics networks ; Microorganisms ; open science ; Pharmaceutical Preparations - administration & dosage ; Pharmacogenetics - methods ; Pharmacogenomics ; pharmacometagenomics ; pharmacomicrobiomics ; Public health ; Toxicity ; Xenobiotics</subject><ispartof>Pharmacogenomics, 2019-07, Vol.20 (10), p.731-739</ispartof><rights>2019 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3</citedby><cites>FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3</cites><orcidid>0000-0002-6263-4231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31368841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katsila, Theodora</creatorcontrib><creatorcontrib>Balasopoulou, Angeliki</creatorcontrib><creatorcontrib>Tsagaraki, Ioanna</creatorcontrib><creatorcontrib>Patrinos, George P</creatorcontrib><title>Pharmacomicrobiomics informs clinical pharmacogenomics</title><title>Pharmacogenomics</title><addtitle>Pharmacogenomics</addtitle><description>Microbiota–host–xenobiotics interactions in humans become of prime interest when clinical pharmacogenomics is to be implemented. Despite the advent of technology, information still needs to be translated into knowledge for optimum patient stratification and disease management.
Herein, we mined metagenomic, pharmacometagenomic and pharmacomicrobiomic datasets to map microbiota–host–drugs networks.
Datasets were multifaceted and voluminous. Interoperability, data sparsity and scarcity remain a challenge. Mapping microbiota–host–drugs networks allowed the prediction of drug response/toxicity and modulation of the microbiota–host–drugs interplay.
Our approach triangulated microbiota, host and drug networks revealing the need for contextual data and open science via microattribution to accelerate knowledge growth. Our findings may serve as a data storehouse for a user-friendly query system, coupled with databanks and databases.</description><subject>Antibiotics</subject><subject>Citation indexes</subject><subject>Collaboration</subject><subject>Content analysis</subject><subject>contextual data</subject><subject>Data banks</subject><subject>Databases, Factual</subject><subject>Drug-Related Side Effects and Adverse Reactions - genetics</subject><subject>Drugs</subject><subject>Ecosystems</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health care</subject><subject>Host Microbial Interactions - genetics</subject><subject>Humans</subject><subject>metagenomics</subject><subject>Microbiota</subject><subject>Microbiota - physiology</subject><subject>microbiota–host–xenobiotics networks</subject><subject>Microorganisms</subject><subject>open science</subject><subject>Pharmaceutical Preparations - administration & dosage</subject><subject>Pharmacogenetics - methods</subject><subject>Pharmacogenomics</subject><subject>pharmacometagenomics</subject><subject>pharmacomicrobiomics</subject><subject>Public health</subject><subject>Toxicity</subject><subject>Xenobiotics</subject><issn>1462-2416</issn><issn>1744-8042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUwsqJKzAaf49jJiCq-pEowwGw5zrm4aj6wm4F_j0MKG4vPJz1-7_wQcgnshnNQt_0mUs6gpIxxdUTmoISgBRP8ON2F5JQLkDNyFuM2ESAFOyWzDDJZFALmRL5-mNAY2zXehq7yY41L37ouNHFpd7711uyW_YHaYPtDnJMTZ3YRLw51Qd4f7t9WT3T98vi8ultTmynYU5VJHCfx3AohlaqUZcxWIKtSGsgFQ2l5jWl9a_IcSiixLlxuMuBYO-GyBbmecvvQfQ4Y93rbDaFNIzXnShYsnWWi6ESlL8QY0Ok--MaELw1Mj5Z0sqRHS3q0lPirQ-pQNVj_0b9aElBOgBv2Q8BoPbYW9dSlF976Fv8J_wZe4XXK</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Katsila, Theodora</creator><creator>Balasopoulou, Angeliki</creator><creator>Tsagaraki, Ioanna</creator><creator>Patrinos, George P</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6263-4231</orcidid></search><sort><creationdate>20190701</creationdate><title>Pharmacomicrobiomics informs clinical pharmacogenomics</title><author>Katsila, Theodora ; Balasopoulou, Angeliki ; Tsagaraki, Ioanna ; Patrinos, George P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibiotics</topic><topic>Citation indexes</topic><topic>Collaboration</topic><topic>Content analysis</topic><topic>contextual data</topic><topic>Data banks</topic><topic>Databases, Factual</topic><topic>Drug-Related Side Effects and Adverse Reactions - genetics</topic><topic>Drugs</topic><topic>Ecosystems</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health care</topic><topic>Host Microbial Interactions - genetics</topic><topic>Humans</topic><topic>metagenomics</topic><topic>Microbiota</topic><topic>Microbiota - physiology</topic><topic>microbiota–host–xenobiotics networks</topic><topic>Microorganisms</topic><topic>open science</topic><topic>Pharmaceutical Preparations - administration & dosage</topic><topic>Pharmacogenetics - methods</topic><topic>Pharmacogenomics</topic><topic>pharmacometagenomics</topic><topic>pharmacomicrobiomics</topic><topic>Public health</topic><topic>Toxicity</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsila, Theodora</creatorcontrib><creatorcontrib>Balasopoulou, Angeliki</creatorcontrib><creatorcontrib>Tsagaraki, Ioanna</creatorcontrib><creatorcontrib>Patrinos, George P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>UK & Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Pharmacogenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsila, Theodora</au><au>Balasopoulou, Angeliki</au><au>Tsagaraki, Ioanna</au><au>Patrinos, George P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacomicrobiomics informs clinical pharmacogenomics</atitle><jtitle>Pharmacogenomics</jtitle><addtitle>Pharmacogenomics</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>731</spage><epage>739</epage><pages>731-739</pages><issn>1462-2416</issn><eissn>1744-8042</eissn><abstract>Microbiota–host–xenobiotics interactions in humans become of prime interest when clinical pharmacogenomics is to be implemented. Despite the advent of technology, information still needs to be translated into knowledge for optimum patient stratification and disease management.
Herein, we mined metagenomic, pharmacometagenomic and pharmacomicrobiomic datasets to map microbiota–host–drugs networks.
Datasets were multifaceted and voluminous. Interoperability, data sparsity and scarcity remain a challenge. Mapping microbiota–host–drugs networks allowed the prediction of drug response/toxicity and modulation of the microbiota–host–drugs interplay.
Our approach triangulated microbiota, host and drug networks revealing the need for contextual data and open science via microattribution to accelerate knowledge growth. Our findings may serve as a data storehouse for a user-friendly query system, coupled with databanks and databases.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>31368841</pmid><doi>10.2217/pgs-2019-0027</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6263-4231</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2416 |
ispartof | Pharmacogenomics, 2019-07, Vol.20 (10), p.731-739 |
issn | 1462-2416 1744-8042 |
language | eng |
recordid | cdi_proquest_journals_2276802279 |
source | PubMed (Medline) |
subjects | Antibiotics Citation indexes Collaboration Content analysis contextual data Data banks Databases, Factual Drug-Related Side Effects and Adverse Reactions - genetics Drugs Ecosystems Genomes Genomics Health care Host Microbial Interactions - genetics Humans metagenomics Microbiota Microbiota - physiology microbiota–host–xenobiotics networks Microorganisms open science Pharmaceutical Preparations - administration & dosage Pharmacogenetics - methods Pharmacogenomics pharmacometagenomics pharmacomicrobiomics Public health Toxicity Xenobiotics |
title | Pharmacomicrobiomics informs clinical pharmacogenomics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacomicrobiomics%20informs%20clinical%20pharmacogenomics&rft.jtitle=Pharmacogenomics&rft.au=Katsila,%20Theodora&rft.date=2019-07-01&rft.volume=20&rft.issue=10&rft.spage=731&rft.epage=739&rft.pages=731-739&rft.issn=1462-2416&rft.eissn=1744-8042&rft_id=info:doi/10.2217/pgs-2019-0027&rft_dat=%3Cproquest_cross%3E2276802279%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-736e368825c44677b7c00cb16b96a1540e6c2de019ca551919ed8f5a312edf4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2276802279&rft_id=info:pmid/31368841&rfr_iscdi=true |