Loading…

Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis

Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2019-09, Vol.181, p.107697, Article 107697
Main Authors: Sánchez, M., Moriche, R., Sánchez-Romate, Xoan F., Prolongo, S.G., Rams, J., Ureña, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3
cites cdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3
container_end_page
container_issue
container_start_page 107697
container_title Composites science and technology
container_volume 181
creator Sánchez, M.
Moriche, R.
Sánchez-Romate, Xoan F.
Prolongo, S.G.
Rams, J.
Ureña, A.
description Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.
doi_str_mv 10.1016/j.compscitech.2019.107697
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276828465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353819308917</els_id><sourcerecordid>2276828465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhYnRxPr4DxjXU4GZgcFd0_hKTNzomlDmYqkjjECNXfrPZVIXLl3d3JNzbs79ELqgZE4J5VebuQnvYzIug1nPGaGy6IJLcYBmtBOyoqQlh2hGGOdV3dbdMTpJaUMIEa1kM_R9Yy2YjIPFr1GPa_CAvfZhHHSGAXLCee3Mm4eUcPA45ahdGeCTy-7T5d2UnAJTjVBESNd4gXuAEWLJQoiQndEDzgHDVxHdO_hcdu31sEsunaEjq4cE57_zFL3c3jwv76vHp7uH5eKxMk0tcsUIExZq0RkpLO0ZkNryFelXrRHAm45wqTWvW2CtNNDVkhmmRUslsSvTcF2fosv93TGGjy2krDZhG0uJpBgTvGNdw9viknuXiSGlCFaNpbGOO0WJmoirjfpDXE3E1Z54yS73WShvfDqIqrjAG-hdLIxVH9w_rvwAXgeTXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276828465</pqid></control><display><type>article</type><title>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</title><source>ScienceDirect Freedom Collection</source><creator>Sánchez, M. ; Moriche, R. ; Sánchez-Romate, Xoan F. ; Prolongo, S.G. ; Rams, J. ; Ureña, A.</creator><creatorcontrib>Sánchez, M. ; Moriche, R. ; Sánchez-Romate, Xoan F. ; Prolongo, S.G. ; Rams, J. ; Ureña, A.</creatorcontrib><description>Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.107697</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>A. Nano composites ; A. Smart materials ; B. Electrical properties ; Breakage ; C. Modelling ; Electric contacts ; Epoxy resins ; Graphene ; Mechanical properties ; Nanocomposites ; Sensitivity analysis ; Sensors ; Tensile strength ; Tensile stress ; Tensile tests ; Thickness</subject><ispartof>Composites science and technology, 2019-09, Vol.181, p.107697, Article 107697</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 8, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</citedby><cites>FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sánchez, M.</creatorcontrib><creatorcontrib>Moriche, R.</creatorcontrib><creatorcontrib>Sánchez-Romate, Xoan F.</creatorcontrib><creatorcontrib>Prolongo, S.G.</creatorcontrib><creatorcontrib>Rams, J.</creatorcontrib><creatorcontrib>Ureña, A.</creatorcontrib><title>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</title><title>Composites science and technology</title><description>Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.</description><subject>A. Nano composites</subject><subject>A. Smart materials</subject><subject>B. Electrical properties</subject><subject>Breakage</subject><subject>C. Modelling</subject><subject>Electric contacts</subject><subject>Epoxy resins</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Tensile tests</subject><subject>Thickness</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPAyEUhYnRxPr4DxjXU4GZgcFd0_hKTNzomlDmYqkjjECNXfrPZVIXLl3d3JNzbs79ELqgZE4J5VebuQnvYzIug1nPGaGy6IJLcYBmtBOyoqQlh2hGGOdV3dbdMTpJaUMIEa1kM_R9Yy2YjIPFr1GPa_CAvfZhHHSGAXLCee3Mm4eUcPA45ahdGeCTy-7T5d2UnAJTjVBESNd4gXuAEWLJQoiQndEDzgHDVxHdO_hcdu31sEsunaEjq4cE57_zFL3c3jwv76vHp7uH5eKxMk0tcsUIExZq0RkpLO0ZkNryFelXrRHAm45wqTWvW2CtNNDVkhmmRUslsSvTcF2fosv93TGGjy2krDZhG0uJpBgTvGNdw9viknuXiSGlCFaNpbGOO0WJmoirjfpDXE3E1Z54yS73WShvfDqIqrjAG-hdLIxVH9w_rvwAXgeTXA</recordid><startdate>20190908</startdate><enddate>20190908</enddate><creator>Sánchez, M.</creator><creator>Moriche, R.</creator><creator>Sánchez-Romate, Xoan F.</creator><creator>Prolongo, S.G.</creator><creator>Rams, J.</creator><creator>Ureña, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190908</creationdate><title>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</title><author>Sánchez, M. ; Moriche, R. ; Sánchez-Romate, Xoan F. ; Prolongo, S.G. ; Rams, J. ; Ureña, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. Nano composites</topic><topic>A. Smart materials</topic><topic>B. Electrical properties</topic><topic>Breakage</topic><topic>C. Modelling</topic><topic>Electric contacts</topic><topic>Epoxy resins</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Tensile tests</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, M.</creatorcontrib><creatorcontrib>Moriche, R.</creatorcontrib><creatorcontrib>Sánchez-Romate, Xoan F.</creatorcontrib><creatorcontrib>Prolongo, S.G.</creatorcontrib><creatorcontrib>Rams, J.</creatorcontrib><creatorcontrib>Ureña, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, M.</au><au>Moriche, R.</au><au>Sánchez-Romate, Xoan F.</au><au>Prolongo, S.G.</au><au>Rams, J.</au><au>Ureña, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</atitle><jtitle>Composites science and technology</jtitle><date>2019-09-08</date><risdate>2019</risdate><volume>181</volume><spage>107697</spage><pages>107697-</pages><artnum>107697</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.107697</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2019-09, Vol.181, p.107697, Article 107697
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2276828465
source ScienceDirect Freedom Collection
subjects A. Nano composites
A. Smart materials
B. Electrical properties
Breakage
C. Modelling
Electric contacts
Epoxy resins
Graphene
Mechanical properties
Nanocomposites
Sensitivity analysis
Sensors
Tensile strength
Tensile stress
Tensile tests
Thickness
title Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20graphene%20nanoplatelets%20thickness%20on%20strain%20sensitivity%20of%20nanocomposites:%20A%20deeper%20theoretical%20to%20experimental%20analysis&rft.jtitle=Composites%20science%20and%20technology&rft.au=S%C3%A1nchez,%20M.&rft.date=2019-09-08&rft.volume=181&rft.spage=107697&rft.pages=107697-&rft.artnum=107697&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.107697&rft_dat=%3Cproquest_cross%3E2276828465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2276828465&rft_id=info:pmid/&rfr_iscdi=true