Loading…
Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis
Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy...
Saved in:
Published in: | Composites science and technology 2019-09, Vol.181, p.107697, Article 107697 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3 |
container_end_page | |
container_issue | |
container_start_page | 107697 |
container_title | Composites science and technology |
container_volume | 181 |
creator | Sánchez, M. Moriche, R. Sánchez-Romate, Xoan F. Prolongo, S.G. Rams, J. Ureña, A. |
description | Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites. |
doi_str_mv | 10.1016/j.compscitech.2019.107697 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276828465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353819308917</els_id><sourcerecordid>2276828465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</originalsourceid><addsrcrecordid>eNqNkEtPAyEUhYnRxPr4DxjXU4GZgcFd0_hKTNzomlDmYqkjjECNXfrPZVIXLl3d3JNzbs79ELqgZE4J5VebuQnvYzIug1nPGaGy6IJLcYBmtBOyoqQlh2hGGOdV3dbdMTpJaUMIEa1kM_R9Yy2YjIPFr1GPa_CAvfZhHHSGAXLCee3Mm4eUcPA45ahdGeCTy-7T5d2UnAJTjVBESNd4gXuAEWLJQoiQndEDzgHDVxHdO_hcdu31sEsunaEjq4cE57_zFL3c3jwv76vHp7uH5eKxMk0tcsUIExZq0RkpLO0ZkNryFelXrRHAm45wqTWvW2CtNNDVkhmmRUslsSvTcF2fosv93TGGjy2krDZhG0uJpBgTvGNdw9viknuXiSGlCFaNpbGOO0WJmoirjfpDXE3E1Z54yS73WShvfDqIqrjAG-hdLIxVH9w_rvwAXgeTXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276828465</pqid></control><display><type>article</type><title>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</title><source>ScienceDirect Freedom Collection</source><creator>Sánchez, M. ; Moriche, R. ; Sánchez-Romate, Xoan F. ; Prolongo, S.G. ; Rams, J. ; Ureña, A.</creator><creatorcontrib>Sánchez, M. ; Moriche, R. ; Sánchez-Romate, Xoan F. ; Prolongo, S.G. ; Rams, J. ; Ureña, A.</creatorcontrib><description>Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.107697</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>A. Nano composites ; A. Smart materials ; B. Electrical properties ; Breakage ; C. Modelling ; Electric contacts ; Epoxy resins ; Graphene ; Mechanical properties ; Nanocomposites ; Sensitivity analysis ; Sensors ; Tensile strength ; Tensile stress ; Tensile tests ; Thickness</subject><ispartof>Composites science and technology, 2019-09, Vol.181, p.107697, Article 107697</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 8, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</citedby><cites>FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sánchez, M.</creatorcontrib><creatorcontrib>Moriche, R.</creatorcontrib><creatorcontrib>Sánchez-Romate, Xoan F.</creatorcontrib><creatorcontrib>Prolongo, S.G.</creatorcontrib><creatorcontrib>Rams, J.</creatorcontrib><creatorcontrib>Ureña, A.</creatorcontrib><title>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</title><title>Composites science and technology</title><description>Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.</description><subject>A. Nano composites</subject><subject>A. Smart materials</subject><subject>B. Electrical properties</subject><subject>Breakage</subject><subject>C. Modelling</subject><subject>Electric contacts</subject><subject>Epoxy resins</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Tensile tests</subject><subject>Thickness</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPAyEUhYnRxPr4DxjXU4GZgcFd0_hKTNzomlDmYqkjjECNXfrPZVIXLl3d3JNzbs79ELqgZE4J5VebuQnvYzIug1nPGaGy6IJLcYBmtBOyoqQlh2hGGOdV3dbdMTpJaUMIEa1kM_R9Yy2YjIPFr1GPa_CAvfZhHHSGAXLCee3Mm4eUcPA45ahdGeCTy-7T5d2UnAJTjVBESNd4gXuAEWLJQoiQndEDzgHDVxHdO_hcdu31sEsunaEjq4cE57_zFL3c3jwv76vHp7uH5eKxMk0tcsUIExZq0RkpLO0ZkNryFelXrRHAm45wqTWvW2CtNNDVkhmmRUslsSvTcF2fosv93TGGjy2krDZhG0uJpBgTvGNdw9viknuXiSGlCFaNpbGOO0WJmoirjfpDXE3E1Z54yS73WShvfDqIqrjAG-hdLIxVH9w_rvwAXgeTXA</recordid><startdate>20190908</startdate><enddate>20190908</enddate><creator>Sánchez, M.</creator><creator>Moriche, R.</creator><creator>Sánchez-Romate, Xoan F.</creator><creator>Prolongo, S.G.</creator><creator>Rams, J.</creator><creator>Ureña, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190908</creationdate><title>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</title><author>Sánchez, M. ; Moriche, R. ; Sánchez-Romate, Xoan F. ; Prolongo, S.G. ; Rams, J. ; Ureña, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. Nano composites</topic><topic>A. Smart materials</topic><topic>B. Electrical properties</topic><topic>Breakage</topic><topic>C. Modelling</topic><topic>Electric contacts</topic><topic>Epoxy resins</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Tensile tests</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, M.</creatorcontrib><creatorcontrib>Moriche, R.</creatorcontrib><creatorcontrib>Sánchez-Romate, Xoan F.</creatorcontrib><creatorcontrib>Prolongo, S.G.</creatorcontrib><creatorcontrib>Rams, J.</creatorcontrib><creatorcontrib>Ureña, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, M.</au><au>Moriche, R.</au><au>Sánchez-Romate, Xoan F.</au><au>Prolongo, S.G.</au><au>Rams, J.</au><au>Ureña, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis</atitle><jtitle>Composites science and technology</jtitle><date>2019-09-08</date><risdate>2019</risdate><volume>181</volume><spage>107697</spage><pages>107697-</pages><artnum>107697</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Conductive epoxy nanocomposites were prepared using two different thickness graphene nanoplatelets (GNPs) as reinforcement, H25 and M25. In both cases, 3 and 5 wt % GNPs was dispersed into the matrix by means of sonication and calandering processes. The piezoresistive mechanisms of these GNPs/epoxy sensors were studied under tensile and flexural tests. Under tensile loads, H25 nanocomposites, with 15 nm thickness, have a lower sensitivity at low strains and higher at high strains than M25 ones, with 6 nm thickness. This apparently anomalous behavior is explained under the basis of a theoretical model where two types of contacts between GNPs are considered. H25 nanocomposites show a prevalence of type I tunneling mechanisms at low strains and a prevalence of type II contacts at high strains, explaining this more pronounced exponential effect of the electrical resistance. In case of flexural tests, tensile and compressive subjected faces were monitored separately. Lower values of sensitivity than in tensile tests were observed due to the influence of breakage and creation of electrical pathways, showing a similar trend at low and high strains for H25 and M25 nanocomposites.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.107697</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2019-09, Vol.181, p.107697, Article 107697 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2276828465 |
source | ScienceDirect Freedom Collection |
subjects | A. Nano composites A. Smart materials B. Electrical properties Breakage C. Modelling Electric contacts Epoxy resins Graphene Mechanical properties Nanocomposites Sensitivity analysis Sensors Tensile strength Tensile stress Tensile tests Thickness |
title | Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20graphene%20nanoplatelets%20thickness%20on%20strain%20sensitivity%20of%20nanocomposites:%20A%20deeper%20theoretical%20to%20experimental%20analysis&rft.jtitle=Composites%20science%20and%20technology&rft.au=S%C3%A1nchez,%20M.&rft.date=2019-09-08&rft.volume=181&rft.spage=107697&rft.pages=107697-&rft.artnum=107697&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.107697&rft_dat=%3Cproquest_cross%3E2276828465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-2027fe378c97f1d2e03f6b0db5c7e648069aa635e259ce8392c2a75190fbc46a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2276828465&rft_id=info:pmid/&rfr_iscdi=true |