Loading…

Biomodal Tumor‐Targeted and Redox‐Responsive Bi2Se3 Hollow Nanocubes for MSOT/CT Imaging Guided Synergistic Low‐Temperature Photothermal Radiotherapy

Hyperthemia (>50 °C) induced heating damage of nearby normal organs and inflammatory diseases are the main challenges for photothermal therapy (PTT) of cancers. To overcome this limitation, a redox‐responsive biomodal tumor‐targeted nanoplatform is synthesized, which can achieve multispectral opt...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2019-08, Vol.8 (16), p.n/a
Main Authors: Song, Yilin, Wang, Yule, Zhu, Yan, Cheng, Yu, Wang, Yidan, Wang, Siyu, Tan, Fengping, Lian, Fan, Li, Nan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced healthcare materials
container_volume 8
creator Song, Yilin
Wang, Yule
Zhu, Yan
Cheng, Yu
Wang, Yidan
Wang, Siyu
Tan, Fengping
Lian, Fan
Li, Nan
description Hyperthemia (>50 °C) induced heating damage of nearby normal organs and inflammatory diseases are the main challenges for photothermal therapy (PTT) of cancers. To overcome this limitation, a redox‐responsive biomodal tumor‐targeted nanoplatform is synthesized, which can achieve multispectral optoacoustic tomography/X‐ray computed tomography imaging‐guided low‐temperature photothermal‐radio combined therapy (PTT RT). In this study, Bi2Se3 hollow nanocubes (HNCs) are first fabricated based on a mild cation exchange way and Kirkendall effect and then modified with hyaluronic acid (HA) through redox‐cleavable linkage (‐s‐s‐), thus enabling the HNC to target cancer cells overexpressing CD‐44 and control the cargo release profile. Finally, gambogic acid (GA), a type of heat‐shock protein (HSP) inhibitor, which is vital to cells resisting heating‐caused damage is loaded, into Bi2Se3 HNC. Such HNC‐s‐s‐HA/GA under a mild NIR laser irradiation can induce efficient cancer cell apoptosis, achieving PTT under relatively low temperature (≈43 °C) with remarkable cancer cell damage efficiency. Furthermore, enhanced radiotherapy (RT) can also be experienced without depth limitation based on RT sensitizer Bi2Se3 HNC. This research designs a facile way to synthesize Bi2Se3 HNC‐s‐s‐HA/GA possessing theranostic functionality and cancer cells‐specific GSH, but also shows a low‐temperature PTT RT method to cure tumors in a minimally invasive and highly efficient way. In this study, a redox‐responsive biomodal tumor‐targeted nanoplatform is fabricated, by gambogic acid (GA)‐loaded hyaluronic acid (HA)‐modified Bi2Se3 hollow nanocube (HNC). Such a nanoplatform can induce efficient cancer cell apoptosis under mild NIR laser and X‐ray irradiation, achieving low temperature PTT and enhanced radiotherapy (RT).
doi_str_mv 10.1002/adhm.201900250
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2277334356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277334356</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-ae8b99e429926b6566ed3f3c13958302d3db839460e3cdbc4eacd0b4ee3940203</originalsourceid><addsrcrecordid>eNo9UcFOwkAUbIwmEuTqeRPPhe1uu3SPgAokIAbqudl2H2VJ263bVuTmJ3j37_wSFzW8y3szmcy8ZBzn1sN9D2MyEHJX9An2uAUBvnA6xOPEJSzgl-fbx9dOr6732A4LPBZ6HedrrHShpchR1BbafH98RsJk0IBEopRoDVK_W3INdaXLWr0BGiuyAYpmOs_1AT2JUqdtAjXaaoOWm1U0mERoXohMlRmatkpap82xBJOpulEpWujDKQSKCoxoWgPoeacb3ezAFPaLtZDqF4jqeONcbUVeQ-9_d52Xx4doMnMXq-l8Mlq4FaEUuwLChHPwCeeEJSxgDCTd0tSjPAgpJpLKJKTcZxhoKpPUB5FKnPgAlsQE065z9-dbGf3aQt3Ee92a0kbGhAyHlPo0YFbF_1QHlcMxrowqhDnGHo5PBcSnAuJzAfHofrY8I_oD2pGArA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277334356</pqid></control><display><type>article</type><title>Biomodal Tumor‐Targeted and Redox‐Responsive Bi2Se3 Hollow Nanocubes for MSOT/CT Imaging Guided Synergistic Low‐Temperature Photothermal Radiotherapy</title><source>Wiley</source><creator>Song, Yilin ; Wang, Yule ; Zhu, Yan ; Cheng, Yu ; Wang, Yidan ; Wang, Siyu ; Tan, Fengping ; Lian, Fan ; Li, Nan</creator><creatorcontrib>Song, Yilin ; Wang, Yule ; Zhu, Yan ; Cheng, Yu ; Wang, Yidan ; Wang, Siyu ; Tan, Fengping ; Lian, Fan ; Li, Nan</creatorcontrib><description>Hyperthemia (&gt;50 °C) induced heating damage of nearby normal organs and inflammatory diseases are the main challenges for photothermal therapy (PTT) of cancers. To overcome this limitation, a redox‐responsive biomodal tumor‐targeted nanoplatform is synthesized, which can achieve multispectral optoacoustic tomography/X‐ray computed tomography imaging‐guided low‐temperature photothermal‐radio combined therapy (PTT RT). In this study, Bi2Se3 hollow nanocubes (HNCs) are first fabricated based on a mild cation exchange way and Kirkendall effect and then modified with hyaluronic acid (HA) through redox‐cleavable linkage (‐s‐s‐), thus enabling the HNC to target cancer cells overexpressing CD‐44 and control the cargo release profile. Finally, gambogic acid (GA), a type of heat‐shock protein (HSP) inhibitor, which is vital to cells resisting heating‐caused damage is loaded, into Bi2Se3 HNC. Such HNC‐s‐s‐HA/GA under a mild NIR laser irradiation can induce efficient cancer cell apoptosis, achieving PTT under relatively low temperature (≈43 °C) with remarkable cancer cell damage efficiency. Furthermore, enhanced radiotherapy (RT) can also be experienced without depth limitation based on RT sensitizer Bi2Se3 HNC. This research designs a facile way to synthesize Bi2Se3 HNC‐s‐s‐HA/GA possessing theranostic functionality and cancer cells‐specific GSH, but also shows a low‐temperature PTT RT method to cure tumors in a minimally invasive and highly efficient way. In this study, a redox‐responsive biomodal tumor‐targeted nanoplatform is fabricated, by gambogic acid (GA)‐loaded hyaluronic acid (HA)‐modified Bi2Se3 hollow nanocube (HNC). Such a nanoplatform can induce efficient cancer cell apoptosis under mild NIR laser and X‐ray irradiation, achieving low temperature PTT and enhanced radiotherapy (RT).</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201900250</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Apoptosis ; Bi2Se3 hollow nanocubes (HNC) ; biomodal targeted ; Cancer ; Cation exchange ; Cation exchanging ; Computed tomography ; Damage ; enhanced radiotherapy ; Heat exchange ; Heat shock proteins ; Heating ; Hyaluronic acid ; Inflammatory diseases ; Irradiation ; Kirkendall effect ; Low temperature ; low temperature photothermal therapy ; Medical imaging ; multispectral optoacoustic tomography (MSOT) ; Organs ; Radiation therapy ; redox‐responsiveness ; Synthesis ; Temperature effects ; Tumors</subject><ispartof>Advanced healthcare materials, 2019-08, Vol.8 (16), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5672-0264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Yilin</creatorcontrib><creatorcontrib>Wang, Yule</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Wang, Yidan</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Tan, Fengping</creatorcontrib><creatorcontrib>Lian, Fan</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><title>Biomodal Tumor‐Targeted and Redox‐Responsive Bi2Se3 Hollow Nanocubes for MSOT/CT Imaging Guided Synergistic Low‐Temperature Photothermal Radiotherapy</title><title>Advanced healthcare materials</title><description>Hyperthemia (&gt;50 °C) induced heating damage of nearby normal organs and inflammatory diseases are the main challenges for photothermal therapy (PTT) of cancers. To overcome this limitation, a redox‐responsive biomodal tumor‐targeted nanoplatform is synthesized, which can achieve multispectral optoacoustic tomography/X‐ray computed tomography imaging‐guided low‐temperature photothermal‐radio combined therapy (PTT RT). In this study, Bi2Se3 hollow nanocubes (HNCs) are first fabricated based on a mild cation exchange way and Kirkendall effect and then modified with hyaluronic acid (HA) through redox‐cleavable linkage (‐s‐s‐), thus enabling the HNC to target cancer cells overexpressing CD‐44 and control the cargo release profile. Finally, gambogic acid (GA), a type of heat‐shock protein (HSP) inhibitor, which is vital to cells resisting heating‐caused damage is loaded, into Bi2Se3 HNC. Such HNC‐s‐s‐HA/GA under a mild NIR laser irradiation can induce efficient cancer cell apoptosis, achieving PTT under relatively low temperature (≈43 °C) with remarkable cancer cell damage efficiency. Furthermore, enhanced radiotherapy (RT) can also be experienced without depth limitation based on RT sensitizer Bi2Se3 HNC. This research designs a facile way to synthesize Bi2Se3 HNC‐s‐s‐HA/GA possessing theranostic functionality and cancer cells‐specific GSH, but also shows a low‐temperature PTT RT method to cure tumors in a minimally invasive and highly efficient way. In this study, a redox‐responsive biomodal tumor‐targeted nanoplatform is fabricated, by gambogic acid (GA)‐loaded hyaluronic acid (HA)‐modified Bi2Se3 hollow nanocube (HNC). Such a nanoplatform can induce efficient cancer cell apoptosis under mild NIR laser and X‐ray irradiation, achieving low temperature PTT and enhanced radiotherapy (RT).</description><subject>Apoptosis</subject><subject>Bi2Se3 hollow nanocubes (HNC)</subject><subject>biomodal targeted</subject><subject>Cancer</subject><subject>Cation exchange</subject><subject>Cation exchanging</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>enhanced radiotherapy</subject><subject>Heat exchange</subject><subject>Heat shock proteins</subject><subject>Heating</subject><subject>Hyaluronic acid</subject><subject>Inflammatory diseases</subject><subject>Irradiation</subject><subject>Kirkendall effect</subject><subject>Low temperature</subject><subject>low temperature photothermal therapy</subject><subject>Medical imaging</subject><subject>multispectral optoacoustic tomography (MSOT)</subject><subject>Organs</subject><subject>Radiation therapy</subject><subject>redox‐responsiveness</subject><subject>Synthesis</subject><subject>Temperature effects</subject><subject>Tumors</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UcFOwkAUbIwmEuTqeRPPhe1uu3SPgAokIAbqudl2H2VJ263bVuTmJ3j37_wSFzW8y3szmcy8ZBzn1sN9D2MyEHJX9An2uAUBvnA6xOPEJSzgl-fbx9dOr6732A4LPBZ6HedrrHShpchR1BbafH98RsJk0IBEopRoDVK_W3INdaXLWr0BGiuyAYpmOs_1AT2JUqdtAjXaaoOWm1U0mERoXohMlRmatkpap82xBJOpulEpWujDKQSKCoxoWgPoeacb3ezAFPaLtZDqF4jqeONcbUVeQ-9_d52Xx4doMnMXq-l8Mlq4FaEUuwLChHPwCeeEJSxgDCTd0tSjPAgpJpLKJKTcZxhoKpPUB5FKnPgAlsQE065z9-dbGf3aQt3Ee92a0kbGhAyHlPo0YFbF_1QHlcMxrowqhDnGHo5PBcSnAuJzAfHofrY8I_oD2pGArA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Song, Yilin</creator><creator>Wang, Yule</creator><creator>Zhu, Yan</creator><creator>Cheng, Yu</creator><creator>Wang, Yidan</creator><creator>Wang, Siyu</creator><creator>Tan, Fengping</creator><creator>Lian, Fan</creator><creator>Li, Nan</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5672-0264</orcidid></search><sort><creationdate>20190801</creationdate><title>Biomodal Tumor‐Targeted and Redox‐Responsive Bi2Se3 Hollow Nanocubes for MSOT/CT Imaging Guided Synergistic Low‐Temperature Photothermal Radiotherapy</title><author>Song, Yilin ; Wang, Yule ; Zhu, Yan ; Cheng, Yu ; Wang, Yidan ; Wang, Siyu ; Tan, Fengping ; Lian, Fan ; Li, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-ae8b99e429926b6566ed3f3c13958302d3db839460e3cdbc4eacd0b4ee3940203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apoptosis</topic><topic>Bi2Se3 hollow nanocubes (HNC)</topic><topic>biomodal targeted</topic><topic>Cancer</topic><topic>Cation exchange</topic><topic>Cation exchanging</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>enhanced radiotherapy</topic><topic>Heat exchange</topic><topic>Heat shock proteins</topic><topic>Heating</topic><topic>Hyaluronic acid</topic><topic>Inflammatory diseases</topic><topic>Irradiation</topic><topic>Kirkendall effect</topic><topic>Low temperature</topic><topic>low temperature photothermal therapy</topic><topic>Medical imaging</topic><topic>multispectral optoacoustic tomography (MSOT)</topic><topic>Organs</topic><topic>Radiation therapy</topic><topic>redox‐responsiveness</topic><topic>Synthesis</topic><topic>Temperature effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yilin</creatorcontrib><creatorcontrib>Wang, Yule</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Wang, Yidan</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Tan, Fengping</creatorcontrib><creatorcontrib>Lian, Fan</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yilin</au><au>Wang, Yule</au><au>Zhu, Yan</au><au>Cheng, Yu</au><au>Wang, Yidan</au><au>Wang, Siyu</au><au>Tan, Fengping</au><au>Lian, Fan</au><au>Li, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomodal Tumor‐Targeted and Redox‐Responsive Bi2Se3 Hollow Nanocubes for MSOT/CT Imaging Guided Synergistic Low‐Temperature Photothermal Radiotherapy</atitle><jtitle>Advanced healthcare materials</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>8</volume><issue>16</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Hyperthemia (&gt;50 °C) induced heating damage of nearby normal organs and inflammatory diseases are the main challenges for photothermal therapy (PTT) of cancers. To overcome this limitation, a redox‐responsive biomodal tumor‐targeted nanoplatform is synthesized, which can achieve multispectral optoacoustic tomography/X‐ray computed tomography imaging‐guided low‐temperature photothermal‐radio combined therapy (PTT RT). In this study, Bi2Se3 hollow nanocubes (HNCs) are first fabricated based on a mild cation exchange way and Kirkendall effect and then modified with hyaluronic acid (HA) through redox‐cleavable linkage (‐s‐s‐), thus enabling the HNC to target cancer cells overexpressing CD‐44 and control the cargo release profile. Finally, gambogic acid (GA), a type of heat‐shock protein (HSP) inhibitor, which is vital to cells resisting heating‐caused damage is loaded, into Bi2Se3 HNC. Such HNC‐s‐s‐HA/GA under a mild NIR laser irradiation can induce efficient cancer cell apoptosis, achieving PTT under relatively low temperature (≈43 °C) with remarkable cancer cell damage efficiency. Furthermore, enhanced radiotherapy (RT) can also be experienced without depth limitation based on RT sensitizer Bi2Se3 HNC. This research designs a facile way to synthesize Bi2Se3 HNC‐s‐s‐HA/GA possessing theranostic functionality and cancer cells‐specific GSH, but also shows a low‐temperature PTT RT method to cure tumors in a minimally invasive and highly efficient way. In this study, a redox‐responsive biomodal tumor‐targeted nanoplatform is fabricated, by gambogic acid (GA)‐loaded hyaluronic acid (HA)‐modified Bi2Se3 hollow nanocube (HNC). Such a nanoplatform can induce efficient cancer cell apoptosis under mild NIR laser and X‐ray irradiation, achieving low temperature PTT and enhanced radiotherapy (RT).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adhm.201900250</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5672-0264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2019-08, Vol.8 (16), p.n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_journals_2277334356
source Wiley
subjects Apoptosis
Bi2Se3 hollow nanocubes (HNC)
biomodal targeted
Cancer
Cation exchange
Cation exchanging
Computed tomography
Damage
enhanced radiotherapy
Heat exchange
Heat shock proteins
Heating
Hyaluronic acid
Inflammatory diseases
Irradiation
Kirkendall effect
Low temperature
low temperature photothermal therapy
Medical imaging
multispectral optoacoustic tomography (MSOT)
Organs
Radiation therapy
redox‐responsiveness
Synthesis
Temperature effects
Tumors
title Biomodal Tumor‐Targeted and Redox‐Responsive Bi2Se3 Hollow Nanocubes for MSOT/CT Imaging Guided Synergistic Low‐Temperature Photothermal Radiotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomodal%20Tumor%E2%80%90Targeted%20and%20Redox%E2%80%90Responsive%20Bi2Se3%20Hollow%20Nanocubes%20for%20MSOT/CT%20Imaging%20Guided%20Synergistic%20Low%E2%80%90Temperature%20Photothermal%20Radiotherapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Song,%20Yilin&rft.date=2019-08-01&rft.volume=8&rft.issue=16&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201900250&rft_dat=%3Cproquest_wiley%3E2277334356%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2330-ae8b99e429926b6566ed3f3c13958302d3db839460e3cdbc4eacd0b4ee3940203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2277334356&rft_id=info:pmid/&rfr_iscdi=true