Loading…

Comprehensive Controller Implementation for Wind-PV-Diesel Based Standalone Microgrid

In this paper, a comprehensive controller of a standalone microgrid is implemented, which has three dispersed generation units based on a wind, solar photovoltaic (PV) array, and a diesel generator (DG). The power ratio variable step perturb and observe method is applied to achieve maximum power poi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2019-09, Vol.55 (5), p.5416-5428
Main Authors: Rezkallah, Miloud, Singh, Sanjeev, Chandra, Ambrish, Singh, Bhim, Tremblay, Marco, Saad, Maarouf, Geng, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263
cites cdi_FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263
container_end_page 5428
container_issue 5
container_start_page 5416
container_title IEEE transactions on industry applications
container_volume 55
creator Rezkallah, Miloud
Singh, Sanjeev
Chandra, Ambrish
Singh, Bhim
Tremblay, Marco
Saad, Maarouf
Geng, Hua
description In this paper, a comprehensive controller of a standalone microgrid is implemented, which has three dispersed generation units based on a wind, solar photovoltaic (PV) array, and a diesel generator (DG). The power ratio variable step perturb and observe method is applied to achieve maximum power point tracking of a solar PV array and a variable speed wind turbine coupled a permanent magnet brushless dc generator without rotor/wind speed sensors. Moreover, to ensure perfect synchronization of a DG to the point of common coupling (PCC), a control algorithm is developed, which is based on in-phase and quadrature units. An active power control based on proportional-integral controller with anti-windup, is used for voltage and frequency regulation. The LCL filter based on virtual resistor, is used for power quality improvement at PCC. Simulation and test results are presented for the validation of the proposed system using a prototype of 2 kW in the laboratory.
doi_str_mv 10.1109/TIA.2019.2928254
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2278394875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8760399</ieee_id><sourcerecordid>2278394875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcFrzvz0TTJ5axfg4mCm16GtDnVjLapSSf47-3Y8OpcnOd9z-FB6JLgGSFY3awW8xnFRM2oopLy7AhNiGIqVSwXx2iCsWKpUio7RWcxbjAmGSfZBK0L3_YBvqCL7geSwndD8E0DIVm0fQMtdIMZnO-S2ofkw3U2fX1P7xxEaJJbE8Emb4PprGl8B8mzq4L_DM6eo5PaNBEuDnOK1g_3q-IpXb48Lor5Mq0Yk0PKiRHSUiZzWyrGhSkFV9ZykRtcCUpLIlRZjitZGVLSOrc8ryrgtQWBKc3ZFF3ve_vgv7cQB73x29CNJzWlQjKVScFHCu-p8bsYA9S6D6414VcTrHfy9ChP7-Tpg7wxcrWPOAD4x6XIMVOK_QEw0Gs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278394875</pqid></control><display><type>article</type><title>Comprehensive Controller Implementation for Wind-PV-Diesel Based Standalone Microgrid</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rezkallah, Miloud ; Singh, Sanjeev ; Chandra, Ambrish ; Singh, Bhim ; Tremblay, Marco ; Saad, Maarouf ; Geng, Hua</creator><creatorcontrib>Rezkallah, Miloud ; Singh, Sanjeev ; Chandra, Ambrish ; Singh, Bhim ; Tremblay, Marco ; Saad, Maarouf ; Geng, Hua</creatorcontrib><description>In this paper, a comprehensive controller of a standalone microgrid is implemented, which has three dispersed generation units based on a wind, solar photovoltaic (PV) array, and a diesel generator (DG). The power ratio variable step perturb and observe method is applied to achieve maximum power point tracking of a solar PV array and a variable speed wind turbine coupled a permanent magnet brushless dc generator without rotor/wind speed sensors. Moreover, to ensure perfect synchronization of a DG to the point of common coupling (PCC), a control algorithm is developed, which is based on in-phase and quadrature units. An active power control based on proportional-integral controller with anti-windup, is used for voltage and frequency regulation. The LCL filter based on virtual resistor, is used for power quality improvement at PCC. Simulation and test results are presented for the validation of the proposed system using a prototype of 2 kW in the laboratory.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2019.2928254</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active damping ; Active filters ; Algorithms ; Anti-windup ; Arrays ; Computer simulation ; Control algorithms ; Control theory ; Controllers ; DC generators ; diesel generator (DG) ; Diesel generators ; Distributed generation ; Generators ; LCL filter-based virtual resistor ; Maximum power tracking ; Permanent magnets ; Photovoltaic cells ; Photovoltaic systems ; point of common coupling (PCC) voltage regulation ; Power control ; Power harmonic filters ; power quality improvement and proportional–integral (PI) controller with anti-windup ; Product design ; Resistors ; Solar cells ; solar photovoltaic (PV) array ; standalone microgrid (SMG) ; State of charge ; Synchronism ; Voltage control ; Wind speed ; wind turbine (WT) ; Wind turbines</subject><ispartof>IEEE transactions on industry applications, 2019-09, Vol.55 (5), p.5416-5428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263</citedby><cites>FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263</cites><orcidid>0000-0002-3919-1874 ; 0000-0003-2974-1120 ; 0000-0002-9205-2275 ; 0000-0003-4298-5701 ; 0000-0002-8336-6731 ; 0000-0003-4759-7484 ; 0000-0003-2547-2509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8760399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rezkallah, Miloud</creatorcontrib><creatorcontrib>Singh, Sanjeev</creatorcontrib><creatorcontrib>Chandra, Ambrish</creatorcontrib><creatorcontrib>Singh, Bhim</creatorcontrib><creatorcontrib>Tremblay, Marco</creatorcontrib><creatorcontrib>Saad, Maarouf</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><title>Comprehensive Controller Implementation for Wind-PV-Diesel Based Standalone Microgrid</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In this paper, a comprehensive controller of a standalone microgrid is implemented, which has three dispersed generation units based on a wind, solar photovoltaic (PV) array, and a diesel generator (DG). The power ratio variable step perturb and observe method is applied to achieve maximum power point tracking of a solar PV array and a variable speed wind turbine coupled a permanent magnet brushless dc generator without rotor/wind speed sensors. Moreover, to ensure perfect synchronization of a DG to the point of common coupling (PCC), a control algorithm is developed, which is based on in-phase and quadrature units. An active power control based on proportional-integral controller with anti-windup, is used for voltage and frequency regulation. The LCL filter based on virtual resistor, is used for power quality improvement at PCC. Simulation and test results are presented for the validation of the proposed system using a prototype of 2 kW in the laboratory.</description><subject>Active control</subject><subject>Active damping</subject><subject>Active filters</subject><subject>Algorithms</subject><subject>Anti-windup</subject><subject>Arrays</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Controllers</subject><subject>DC generators</subject><subject>diesel generator (DG)</subject><subject>Diesel generators</subject><subject>Distributed generation</subject><subject>Generators</subject><subject>LCL filter-based virtual resistor</subject><subject>Maximum power tracking</subject><subject>Permanent magnets</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>point of common coupling (PCC) voltage regulation</subject><subject>Power control</subject><subject>Power harmonic filters</subject><subject>power quality improvement and proportional–integral (PI) controller with anti-windup</subject><subject>Product design</subject><subject>Resistors</subject><subject>Solar cells</subject><subject>solar photovoltaic (PV) array</subject><subject>standalone microgrid (SMG)</subject><subject>State of charge</subject><subject>Synchronism</subject><subject>Voltage control</subject><subject>Wind speed</subject><subject>wind turbine (WT)</subject><subject>Wind turbines</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKf3gjcFrzvz0TTJ5axfg4mCm16GtDnVjLapSSf47-3Y8OpcnOd9z-FB6JLgGSFY3awW8xnFRM2oopLy7AhNiGIqVSwXx2iCsWKpUio7RWcxbjAmGSfZBK0L3_YBvqCL7geSwndD8E0DIVm0fQMtdIMZnO-S2ofkw3U2fX1P7xxEaJJbE8Emb4PprGl8B8mzq4L_DM6eo5PaNBEuDnOK1g_3q-IpXb48Lor5Mq0Yk0PKiRHSUiZzWyrGhSkFV9ZykRtcCUpLIlRZjitZGVLSOrc8ryrgtQWBKc3ZFF3ve_vgv7cQB73x29CNJzWlQjKVScFHCu-p8bsYA9S6D6414VcTrHfy9ChP7-Tpg7wxcrWPOAD4x6XIMVOK_QEw0Gs4</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Rezkallah, Miloud</creator><creator>Singh, Sanjeev</creator><creator>Chandra, Ambrish</creator><creator>Singh, Bhim</creator><creator>Tremblay, Marco</creator><creator>Saad, Maarouf</creator><creator>Geng, Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3919-1874</orcidid><orcidid>https://orcid.org/0000-0003-2974-1120</orcidid><orcidid>https://orcid.org/0000-0002-9205-2275</orcidid><orcidid>https://orcid.org/0000-0003-4298-5701</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid><orcidid>https://orcid.org/0000-0003-4759-7484</orcidid><orcidid>https://orcid.org/0000-0003-2547-2509</orcidid></search><sort><creationdate>201909</creationdate><title>Comprehensive Controller Implementation for Wind-PV-Diesel Based Standalone Microgrid</title><author>Rezkallah, Miloud ; Singh, Sanjeev ; Chandra, Ambrish ; Singh, Bhim ; Tremblay, Marco ; Saad, Maarouf ; Geng, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active control</topic><topic>Active damping</topic><topic>Active filters</topic><topic>Algorithms</topic><topic>Anti-windup</topic><topic>Arrays</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Controllers</topic><topic>DC generators</topic><topic>diesel generator (DG)</topic><topic>Diesel generators</topic><topic>Distributed generation</topic><topic>Generators</topic><topic>LCL filter-based virtual resistor</topic><topic>Maximum power tracking</topic><topic>Permanent magnets</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>point of common coupling (PCC) voltage regulation</topic><topic>Power control</topic><topic>Power harmonic filters</topic><topic>power quality improvement and proportional–integral (PI) controller with anti-windup</topic><topic>Product design</topic><topic>Resistors</topic><topic>Solar cells</topic><topic>solar photovoltaic (PV) array</topic><topic>standalone microgrid (SMG)</topic><topic>State of charge</topic><topic>Synchronism</topic><topic>Voltage control</topic><topic>Wind speed</topic><topic>wind turbine (WT)</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezkallah, Miloud</creatorcontrib><creatorcontrib>Singh, Sanjeev</creatorcontrib><creatorcontrib>Chandra, Ambrish</creatorcontrib><creatorcontrib>Singh, Bhim</creatorcontrib><creatorcontrib>Tremblay, Marco</creatorcontrib><creatorcontrib>Saad, Maarouf</creatorcontrib><creatorcontrib>Geng, Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezkallah, Miloud</au><au>Singh, Sanjeev</au><au>Chandra, Ambrish</au><au>Singh, Bhim</au><au>Tremblay, Marco</au><au>Saad, Maarouf</au><au>Geng, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Controller Implementation for Wind-PV-Diesel Based Standalone Microgrid</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2019-09</date><risdate>2019</risdate><volume>55</volume><issue>5</issue><spage>5416</spage><epage>5428</epage><pages>5416-5428</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this paper, a comprehensive controller of a standalone microgrid is implemented, which has three dispersed generation units based on a wind, solar photovoltaic (PV) array, and a diesel generator (DG). The power ratio variable step perturb and observe method is applied to achieve maximum power point tracking of a solar PV array and a variable speed wind turbine coupled a permanent magnet brushless dc generator without rotor/wind speed sensors. Moreover, to ensure perfect synchronization of a DG to the point of common coupling (PCC), a control algorithm is developed, which is based on in-phase and quadrature units. An active power control based on proportional-integral controller with anti-windup, is used for voltage and frequency regulation. The LCL filter based on virtual resistor, is used for power quality improvement at PCC. Simulation and test results are presented for the validation of the proposed system using a prototype of 2 kW in the laboratory.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2019.2928254</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3919-1874</orcidid><orcidid>https://orcid.org/0000-0003-2974-1120</orcidid><orcidid>https://orcid.org/0000-0002-9205-2275</orcidid><orcidid>https://orcid.org/0000-0003-4298-5701</orcidid><orcidid>https://orcid.org/0000-0002-8336-6731</orcidid><orcidid>https://orcid.org/0000-0003-4759-7484</orcidid><orcidid>https://orcid.org/0000-0003-2547-2509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2019-09, Vol.55 (5), p.5416-5428
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_2278394875
source IEEE Electronic Library (IEL) Journals
subjects Active control
Active damping
Active filters
Algorithms
Anti-windup
Arrays
Computer simulation
Control algorithms
Control theory
Controllers
DC generators
diesel generator (DG)
Diesel generators
Distributed generation
Generators
LCL filter-based virtual resistor
Maximum power tracking
Permanent magnets
Photovoltaic cells
Photovoltaic systems
point of common coupling (PCC) voltage regulation
Power control
Power harmonic filters
power quality improvement and proportional–integral (PI) controller with anti-windup
Product design
Resistors
Solar cells
solar photovoltaic (PV) array
standalone microgrid (SMG)
State of charge
Synchronism
Voltage control
Wind speed
wind turbine (WT)
Wind turbines
title Comprehensive Controller Implementation for Wind-PV-Diesel Based Standalone Microgrid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Controller%20Implementation%20for%20Wind-PV-Diesel%20Based%20Standalone%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Rezkallah,%20Miloud&rft.date=2019-09&rft.volume=55&rft.issue=5&rft.spage=5416&rft.epage=5428&rft.pages=5416-5428&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2019.2928254&rft_dat=%3Cproquest_ieee_%3E2278394875%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-51a78d2386db9357ab759dd576a0c722b179bbb938ca1b2f6d56cce5fde702263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2278394875&rft_id=info:pmid/&rft_ieee_id=8760399&rfr_iscdi=true