Loading…

Joint Planning of Smart EV Charging Stations and DGs in Eco-Friendly Remote Hybrid Microgrids

This paper proposes an efficient planning algorithm for allocating smart electric vehicle (EV) charging stations in remote communities. The planning problem jointly allocates and sizes a set of distributed generators (DGs) along with the EV charging stations to balance the supply with the total dema...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2019-09, Vol.10 (5), p.5819-5830
Main Authors: Shaaban, Mostafa F., Mohamed, Sayed, Ismail, Muhammad, Qaraqe, Khalid A., Serpedin, Erchin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3
cites cdi_FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3
container_end_page 5830
container_issue 5
container_start_page 5819
container_title IEEE transactions on smart grid
container_volume 10
creator Shaaban, Mostafa F.
Mohamed, Sayed
Ismail, Muhammad
Qaraqe, Khalid A.
Serpedin, Erchin
description This paper proposes an efficient planning algorithm for allocating smart electric vehicle (EV) charging stations in remote communities. The planning problem jointly allocates and sizes a set of distributed generators (DGs) along with the EV charging stations to balance the supply with the total demand of regular loads and EV charging. The planning algorithm specifies optimal locations and sizes of the EV charging stations and DG units that minimize two conflicting objectives: 1) deployment and operation costs and 2) associated green house gas emissions, while satisfying the microgrid technical constraints. This is achieved by iteratively solving a multi-objective mixed integer non-linear program. An outer sub-problem determines the locations and sizes of the DG units and charging stations using a non-dominated sorting genetic algorithm. Given the allocation and sizing decisions, an inner sub-problem ensures smart, reliable, and eco-friendly operation of the microgrid by solving a non-linear scheduling problem. The proposed algorithm results in a Pareto frontier that captures the tradeoff between the conflicting planning objectives. Simulation studies investigate the performance of the proposed planning algorithm in order to obtain a compromise planning solution.
doi_str_mv 10.1109/TSG.2019.2891900
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2278400364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8606063</ieee_id><sourcerecordid>2278400364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgqb0LXgKet2Y2-5Wj1H4oFcVWbxKym6SmtElN0kP_vSktzhzmMbz5eA-hWyBDAMIelovpMCfAhnnDgBFygXrACpZRUsHlPy7pNRqEsCYpKKVVznro-8UZG_H7Rlhr7Ao7jRdb4SMef-HRj_CrY3MRRTTOBiysxE_TgI3F485lE2-UlZsD_lBbFxWeHVpvJH41nXerhMINutJiE9TgXPvoczJejmbZ_G36PHqcZ13OIGZSiJbUVadYDboDTbqWatqUUElRFrIEYHUtSypaxjoQRDNJWdHohumyIELQPro_7d1597tXIfK123ubTvI8r5si6a2KxCInVnovBK8033mTxB44EH70kScf-dFHfvYxjdydRoxS6p_eVCQlpX9vK21J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278400364</pqid></control><display><type>article</type><title>Joint Planning of Smart EV Charging Stations and DGs in Eco-Friendly Remote Hybrid Microgrids</title><source>IEEE Xplore (Online service)</source><creator>Shaaban, Mostafa F. ; Mohamed, Sayed ; Ismail, Muhammad ; Qaraqe, Khalid A. ; Serpedin, Erchin</creator><creatorcontrib>Shaaban, Mostafa F. ; Mohamed, Sayed ; Ismail, Muhammad ; Qaraqe, Khalid A. ; Serpedin, Erchin</creatorcontrib><description>This paper proposes an efficient planning algorithm for allocating smart electric vehicle (EV) charging stations in remote communities. The planning problem jointly allocates and sizes a set of distributed generators (DGs) along with the EV charging stations to balance the supply with the total demand of regular loads and EV charging. The planning algorithm specifies optimal locations and sizes of the EV charging stations and DG units that minimize two conflicting objectives: 1) deployment and operation costs and 2) associated green house gas emissions, while satisfying the microgrid technical constraints. This is achieved by iteratively solving a multi-objective mixed integer non-linear program. An outer sub-problem determines the locations and sizes of the DG units and charging stations using a non-dominated sorting genetic algorithm. Given the allocation and sizing decisions, an inner sub-problem ensures smart, reliable, and eco-friendly operation of the microgrid by solving a non-linear scheduling problem. The proposed algorithm results in a Pareto frontier that captures the tradeoff between the conflicting planning objectives. Simulation studies investigate the performance of the proposed planning algorithm in order to obtain a compromise planning solution.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2891900</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Charging stations ; Classification ; Community planning ; Computer simulation ; Distributed generation ; Electric power grids ; Electric vehicle charging ; Electric vehicle charging stations ; Electric vehicles ; EV charging stations ; Genetic algorithms ; Greenhouse effect ; Greenhouse gases ; hybrid microgrids ; islanded microgrids ; Load modeling ; microgrid planning ; Microgrids ; Mixed integer ; Multiple objective analysis ; Planning ; Reactive power ; remote microgrids ; Sorting algorithms ; State of charge</subject><ispartof>IEEE transactions on smart grid, 2019-09, Vol.10 (5), p.5819-5830</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3</citedby><cites>FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3</cites><orcidid>0000-0001-5134-0601 ; 0000-0003-1144-868X ; 0000-0002-8051-9747 ; 0000-0001-9069-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8606063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Shaaban, Mostafa F.</creatorcontrib><creatorcontrib>Mohamed, Sayed</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><creatorcontrib>Qaraqe, Khalid A.</creatorcontrib><creatorcontrib>Serpedin, Erchin</creatorcontrib><title>Joint Planning of Smart EV Charging Stations and DGs in Eco-Friendly Remote Hybrid Microgrids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This paper proposes an efficient planning algorithm for allocating smart electric vehicle (EV) charging stations in remote communities. The planning problem jointly allocates and sizes a set of distributed generators (DGs) along with the EV charging stations to balance the supply with the total demand of regular loads and EV charging. The planning algorithm specifies optimal locations and sizes of the EV charging stations and DG units that minimize two conflicting objectives: 1) deployment and operation costs and 2) associated green house gas emissions, while satisfying the microgrid technical constraints. This is achieved by iteratively solving a multi-objective mixed integer non-linear program. An outer sub-problem determines the locations and sizes of the DG units and charging stations using a non-dominated sorting genetic algorithm. Given the allocation and sizing decisions, an inner sub-problem ensures smart, reliable, and eco-friendly operation of the microgrid by solving a non-linear scheduling problem. The proposed algorithm results in a Pareto frontier that captures the tradeoff between the conflicting planning objectives. Simulation studies investigate the performance of the proposed planning algorithm in order to obtain a compromise planning solution.</description><subject>Algorithms</subject><subject>Charging stations</subject><subject>Classification</subject><subject>Community planning</subject><subject>Computer simulation</subject><subject>Distributed generation</subject><subject>Electric power grids</subject><subject>Electric vehicle charging</subject><subject>Electric vehicle charging stations</subject><subject>Electric vehicles</subject><subject>EV charging stations</subject><subject>Genetic algorithms</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>hybrid microgrids</subject><subject>islanded microgrids</subject><subject>Load modeling</subject><subject>microgrid planning</subject><subject>Microgrids</subject><subject>Mixed integer</subject><subject>Multiple objective analysis</subject><subject>Planning</subject><subject>Reactive power</subject><subject>remote microgrids</subject><subject>Sorting algorithms</subject><subject>State of charge</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJgqb0LXgKet2Y2-5Wj1H4oFcVWbxKym6SmtElN0kP_vSktzhzmMbz5eA-hWyBDAMIelovpMCfAhnnDgBFygXrACpZRUsHlPy7pNRqEsCYpKKVVznro-8UZG_H7Rlhr7Ao7jRdb4SMef-HRj_CrY3MRRTTOBiysxE_TgI3F485lE2-UlZsD_lBbFxWeHVpvJH41nXerhMINutJiE9TgXPvoczJejmbZ_G36PHqcZ13OIGZSiJbUVadYDboDTbqWatqUUElRFrIEYHUtSypaxjoQRDNJWdHohumyIELQPro_7d1597tXIfK123ubTvI8r5si6a2KxCInVnovBK8033mTxB44EH70kScf-dFHfvYxjdydRoxS6p_eVCQlpX9vK21J</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Shaaban, Mostafa F.</creator><creator>Mohamed, Sayed</creator><creator>Ismail, Muhammad</creator><creator>Qaraqe, Khalid A.</creator><creator>Serpedin, Erchin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5134-0601</orcidid><orcidid>https://orcid.org/0000-0003-1144-868X</orcidid><orcidid>https://orcid.org/0000-0002-8051-9747</orcidid><orcidid>https://orcid.org/0000-0001-9069-770X</orcidid></search><sort><creationdate>20190901</creationdate><title>Joint Planning of Smart EV Charging Stations and DGs in Eco-Friendly Remote Hybrid Microgrids</title><author>Shaaban, Mostafa F. ; Mohamed, Sayed ; Ismail, Muhammad ; Qaraqe, Khalid A. ; Serpedin, Erchin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Charging stations</topic><topic>Classification</topic><topic>Community planning</topic><topic>Computer simulation</topic><topic>Distributed generation</topic><topic>Electric power grids</topic><topic>Electric vehicle charging</topic><topic>Electric vehicle charging stations</topic><topic>Electric vehicles</topic><topic>EV charging stations</topic><topic>Genetic algorithms</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>hybrid microgrids</topic><topic>islanded microgrids</topic><topic>Load modeling</topic><topic>microgrid planning</topic><topic>Microgrids</topic><topic>Mixed integer</topic><topic>Multiple objective analysis</topic><topic>Planning</topic><topic>Reactive power</topic><topic>remote microgrids</topic><topic>Sorting algorithms</topic><topic>State of charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaaban, Mostafa F.</creatorcontrib><creatorcontrib>Mohamed, Sayed</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><creatorcontrib>Qaraqe, Khalid A.</creatorcontrib><creatorcontrib>Serpedin, Erchin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaaban, Mostafa F.</au><au>Mohamed, Sayed</au><au>Ismail, Muhammad</au><au>Qaraqe, Khalid A.</au><au>Serpedin, Erchin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Planning of Smart EV Charging Stations and DGs in Eco-Friendly Remote Hybrid Microgrids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>10</volume><issue>5</issue><spage>5819</spage><epage>5830</epage><pages>5819-5830</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This paper proposes an efficient planning algorithm for allocating smart electric vehicle (EV) charging stations in remote communities. The planning problem jointly allocates and sizes a set of distributed generators (DGs) along with the EV charging stations to balance the supply with the total demand of regular loads and EV charging. The planning algorithm specifies optimal locations and sizes of the EV charging stations and DG units that minimize two conflicting objectives: 1) deployment and operation costs and 2) associated green house gas emissions, while satisfying the microgrid technical constraints. This is achieved by iteratively solving a multi-objective mixed integer non-linear program. An outer sub-problem determines the locations and sizes of the DG units and charging stations using a non-dominated sorting genetic algorithm. Given the allocation and sizing decisions, an inner sub-problem ensures smart, reliable, and eco-friendly operation of the microgrid by solving a non-linear scheduling problem. The proposed algorithm results in a Pareto frontier that captures the tradeoff between the conflicting planning objectives. Simulation studies investigate the performance of the proposed planning algorithm in order to obtain a compromise planning solution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2891900</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5134-0601</orcidid><orcidid>https://orcid.org/0000-0003-1144-868X</orcidid><orcidid>https://orcid.org/0000-0002-8051-9747</orcidid><orcidid>https://orcid.org/0000-0001-9069-770X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2019-09, Vol.10 (5), p.5819-5830
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2278400364
source IEEE Xplore (Online service)
subjects Algorithms
Charging stations
Classification
Community planning
Computer simulation
Distributed generation
Electric power grids
Electric vehicle charging
Electric vehicle charging stations
Electric vehicles
EV charging stations
Genetic algorithms
Greenhouse effect
Greenhouse gases
hybrid microgrids
islanded microgrids
Load modeling
microgrid planning
Microgrids
Mixed integer
Multiple objective analysis
Planning
Reactive power
remote microgrids
Sorting algorithms
State of charge
title Joint Planning of Smart EV Charging Stations and DGs in Eco-Friendly Remote Hybrid Microgrids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Planning%20of%20Smart%20EV%20Charging%20Stations%20and%20DGs%20in%20Eco-Friendly%20Remote%20Hybrid%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Shaaban,%20Mostafa%20F.&rft.date=2019-09-01&rft.volume=10&rft.issue=5&rft.spage=5819&rft.epage=5830&rft.pages=5819-5830&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2891900&rft_dat=%3Cproquest_ieee_%3E2278400364%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-daab076ce971fc1f0cb3f38516da54d511977d53ab99c1a0f9d3948f89f540aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2278400364&rft_id=info:pmid/&rft_ieee_id=8606063&rfr_iscdi=true