Loading…

Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules

In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as grade...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2019-09, Vol.370 (3), p.759-780
Main Authors: Cheng, Miranda C. N., Duncan, John F. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363
cites cdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363
container_end_page 780
container_issue 3
container_start_page 759
container_title Communications in mathematical physics
container_volume 370
creator Cheng, Miranda C. N.
Duncan, John F. R.
description In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.
doi_str_mv 10.1007/s00220-019-03540-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2279375259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279375259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpykrlkKcXaSoubug6ZmaSdMjOpSQv69kZHcOfqXPgv8BFyy-GeAxQPEQARGHDFQGQSGJ6RCZcCGSien5MJAAcmcp5fkqsY9wCgMM8nZLW2wfc-HHZtTV9M7auWzn3oI_WOLkzn2HI42m0wHV0Ojf2gZmjoW199P9beD3HXDjZtzamz8ZpcONNFe_M7p2Qzf9rMFmz1-rycPa5YLbg6MpSuFKLBqnIGKldKCbxE47ICsHDSlDxTFrnK64obJ4UtUZbWpEPKSuRiSu7G2EPw7ycbj3rvT2FIjRqxUKLIMFNJhaOqDj7GYJ0-hLY34VNz0N_Q9AhNJ2j6B5rGZBKjKSbxsLXhL_of1xdXym34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279375259</pqid></control><display><type>article</type><title>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</title><source>Springer Nature</source><creator>Cheng, Miranda C. N. ; Duncan, John F. R.</creator><creatorcontrib>Cheng, Miranda C. N. ; Duncan, John F. R.</creatorcontrib><description>In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03540-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Integrals ; Mathematical and Computational Physics ; Mathematical Physics ; Modules ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-09, Vol.370 (3), p.759-780</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</citedby><cites>FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</cites><orcidid>0000-0001-6944-9840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Miranda C. N.</creatorcontrib><creatorcontrib>Duncan, John F. R.</creatorcontrib><title>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Integrals</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Modules</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpykrlkKcXaSoubug6ZmaSdMjOpSQv69kZHcOfqXPgv8BFyy-GeAxQPEQARGHDFQGQSGJ6RCZcCGSien5MJAAcmcp5fkqsY9wCgMM8nZLW2wfc-HHZtTV9M7auWzn3oI_WOLkzn2HI42m0wHV0Ojf2gZmjoW199P9beD3HXDjZtzamz8ZpcONNFe_M7p2Qzf9rMFmz1-rycPa5YLbg6MpSuFKLBqnIGKldKCbxE47ICsHDSlDxTFrnK64obJ4UtUZbWpEPKSuRiSu7G2EPw7ycbj3rvT2FIjRqxUKLIMFNJhaOqDj7GYJ0-hLY34VNz0N_Q9AhNJ2j6B5rGZBKjKSbxsLXhL_of1xdXym34</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cheng, Miranda C. N.</creator><creator>Duncan, John F. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6944-9840</orcidid></search><sort><creationdate>20190901</creationdate><title>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</title><author>Cheng, Miranda C. N. ; Duncan, John F. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Integrals</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Modules</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Miranda C. N.</creatorcontrib><creatorcontrib>Duncan, John F. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Miranda C. N.</au><au>Duncan, John F. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>370</volume><issue>3</issue><spage>759</spage><epage>780</epage><pages>759-780</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03540-2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6944-9840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-09, Vol.370 (3), p.759-780
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2279375259
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Integrals
Mathematical and Computational Physics
Mathematical Physics
Modules
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meromorphic%20Jacobi%20Forms%20of%20Half-Integral%20Index%20and%20Umbral%20Moonshine%20Modules&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Cheng,%20Miranda%20C.%20N.&rft.date=2019-09-01&rft.volume=370&rft.issue=3&rft.spage=759&rft.epage=780&rft.pages=759-780&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03540-2&rft_dat=%3Cproquest_cross%3E2279375259%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2279375259&rft_id=info:pmid/&rfr_iscdi=true