Loading…
Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules
In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as grade...
Saved in:
Published in: | Communications in mathematical physics 2019-09, Vol.370 (3), p.759-780 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363 |
container_end_page | 780 |
container_issue | 3 |
container_start_page | 759 |
container_title | Communications in mathematical physics |
container_volume | 370 |
creator | Cheng, Miranda C. N. Duncan, John F. R. |
description | In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms. |
doi_str_mv | 10.1007/s00220-019-03540-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2279375259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279375259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpykrlkKcXaSoubug6ZmaSdMjOpSQv69kZHcOfqXPgv8BFyy-GeAxQPEQARGHDFQGQSGJ6RCZcCGSien5MJAAcmcp5fkqsY9wCgMM8nZLW2wfc-HHZtTV9M7auWzn3oI_WOLkzn2HI42m0wHV0Ojf2gZmjoW199P9beD3HXDjZtzamz8ZpcONNFe_M7p2Qzf9rMFmz1-rycPa5YLbg6MpSuFKLBqnIGKldKCbxE47ICsHDSlDxTFrnK64obJ4UtUZbWpEPKSuRiSu7G2EPw7ycbj3rvT2FIjRqxUKLIMFNJhaOqDj7GYJ0-hLY34VNz0N_Q9AhNJ2j6B5rGZBKjKSbxsLXhL_of1xdXym34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279375259</pqid></control><display><type>article</type><title>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</title><source>Springer Nature</source><creator>Cheng, Miranda C. N. ; Duncan, John F. R.</creator><creatorcontrib>Cheng, Miranda C. N. ; Duncan, John F. R.</creatorcontrib><description>In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03540-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Integrals ; Mathematical and Computational Physics ; Mathematical Physics ; Modules ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-09, Vol.370 (3), p.759-780</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</citedby><cites>FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</cites><orcidid>0000-0001-6944-9840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Miranda C. N.</creatorcontrib><creatorcontrib>Duncan, John F. R.</creatorcontrib><title>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Integrals</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Modules</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpykrlkKcXaSoubug6ZmaSdMjOpSQv69kZHcOfqXPgv8BFyy-GeAxQPEQARGHDFQGQSGJ6RCZcCGSien5MJAAcmcp5fkqsY9wCgMM8nZLW2wfc-HHZtTV9M7auWzn3oI_WOLkzn2HI42m0wHV0Ojf2gZmjoW199P9beD3HXDjZtzamz8ZpcONNFe_M7p2Qzf9rMFmz1-rycPa5YLbg6MpSuFKLBqnIGKldKCbxE47ICsHDSlDxTFrnK64obJ4UtUZbWpEPKSuRiSu7G2EPw7ycbj3rvT2FIjRqxUKLIMFNJhaOqDj7GYJ0-hLY34VNz0N_Q9AhNJ2j6B5rGZBKjKSbxsLXhL_of1xdXym34</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cheng, Miranda C. N.</creator><creator>Duncan, John F. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6944-9840</orcidid></search><sort><creationdate>20190901</creationdate><title>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</title><author>Cheng, Miranda C. N. ; Duncan, John F. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Integrals</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Modules</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Miranda C. N.</creatorcontrib><creatorcontrib>Duncan, John F. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Miranda C. N.</au><au>Duncan, John F. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>370</volume><issue>3</issue><spage>759</spage><epage>780</epage><pages>759-780</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this work we consider an association of meromorphic Jacobi forms of half-integral index to the pure D-type cases of umbral moonshine, and solve the module problem for four of these cases by constructing vertex operator superalgebras that realise the corresponding meromorphic Jacobi forms as graded traces. We also present a general discussion of meromorphic Jacobi forms with half-integral index and their relationship to mock modular forms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03540-2</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6944-9840</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2019-09, Vol.370 (3), p.759-780 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2279375259 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Complex Systems Integrals Mathematical and Computational Physics Mathematical Physics Modules Operators (mathematics) Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meromorphic%20Jacobi%20Forms%20of%20Half-Integral%20Index%20and%20Umbral%20Moonshine%20Modules&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Cheng,%20Miranda%20C.%20N.&rft.date=2019-09-01&rft.volume=370&rft.issue=3&rft.spage=759&rft.epage=780&rft.pages=759-780&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03540-2&rft_dat=%3Cproquest_cross%3E2279375259%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-24f833d2bbfa0bf8440182af57027f4a8159e2196cb1af43e8248eab1a44b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2279375259&rft_id=info:pmid/&rfr_iscdi=true |