Loading…
Sealing performance and fatigue life of the fracturing packer rubber of various materials
The finite element model of four packer rubber materials was established by using ABAQUS and FE-SAFE software. The initial sealing load (the load is the pressure) was 11.85 MPa, and the working load was 58.15 MPa. The sealing evaluation coefficient, maximum contact stress, and fatigue life value of...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2019-09, Vol.233 (17), p.6157-6166 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The finite element model of four packer rubber materials was established by using ABAQUS and FE-SAFE software. The initial sealing load (the load is the pressure) was 11.85 MPa, and the working load was 58.15 MPa. The sealing evaluation coefficient, maximum contact stress, and fatigue life value of four material packer rubbers were considered when considering temperature changes and fatigue unit nodes. The results show that when the working load and the structural parameters of the rubber are the same, the sealing evaluation coefficient of the four material rubber increases with the increase of temperature. When the working temperature reaches 125 ℃, the value of the rubber seal evaluation coefficient of the HNBR material is the largest, and the value of the rubber seal evaluation coefficient of the EPDM material is the smallest. Similarly, the maximum contact stress of the four material rubbers increases with increasing temperature. When the temperature reaches 125 ℃, the maximum contact stress of the HNBR material is the largest, and the maximum contact stress of the EPDM material is the smallest. The rubber of the four materials increase the fatigue life value with the increase in the temperature within the operating temperature range studied. When the temperature is lower than 120 ℃, the fatigue life value of the HNBR material rubber is the largest. When the temperature is higher than 120 ℃, the fatigue life value of the CR material rubber is the largest. Regardless of the temperature change, the fatigue life value of the EPDM is the smallest. By comparing the results of field experiments with the results of finite element models, the two are found to have good consistency, which verifies the validity and feasibility of the model. The research results have important guiding significance for the fatigue life prediction of various material packer rubbers under different temperatures. |
---|---|
ISSN: | 0954-4062 2041-2983 |
DOI: | 10.1177/0954406219859917 |