Loading…
Investigation of the Unsteady Disturbance in Tip Region of a Contra-Rotating Compressor near Stall
The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor (CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluc...
Saved in:
Published in: | Journal of thermal science 2019-10, Vol.28 (5), p.962-974 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor (CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square (PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly. |
---|---|
ISSN: | 1003-2169 1993-033X |
DOI: | 10.1007/s11630-019-1191-8 |