Loading…

Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation

Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2019-09, Vol.119, p.327-340
Main Authors: Baldock, T.E., Shabani, B., Callaghan, D.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53
cites cdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53
container_end_page 340
container_issue
container_start_page 327
container_title Environmental modelling & software : with environment data news
container_volume 119
creator Baldock, T.E.
Shabani, B.
Callaghan, D.P.
description Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion. •Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.
doi_str_mv 10.1016/j.envsoft.2019.07.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282428210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815219305547</els_id><sourcerecordid>2282428210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhU1JoMk0j1C40LVdSZZsz6o0oX8Qmk2zFrJ0NZY7kaa6npR5nTxpZSb7LoQEOt-5nHuq6j1nDWe8-zg3GJ8p-aURjG8b1jeM8TfVFR_6tu560V2Ud9vJeuBKvK2uiWZWFErIq-rl4YARjLVIBLfmhBRMhFvcB_TwE5e_Kf8m8CkD0hKezBLiDpYJYTq5nNwpmqdgCUx0QFPKhYsIGemQIiGMOIXy43OhVjAjegI6jjPaBZYEdr96ItjJxB2efVYRONxl48q4FN9Vl97sCW9e7031-PXLr7vv9f3Dtx93n-9r27b9Ug-sH8eBKZTcqM4MTnLhlBODHR2yrRytV6OTW-kdk0PrWy5tpxyKbVsoq9pN9eHse8jpz7HE1XM65lhGaiEGIcvhrKjUWWVzIsro9SGXDPmkOdNrHXrWr3XotQ7Nel2WXbhPZw5LhOeAWZMNGC26kMsytEvhPw7_AHkLmlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282428210</pqid></control><display><type>article</type><title>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Baldock, T.E. ; Shabani, B. ; Callaghan, D.P.</creator><creatorcontrib>Baldock, T.E. ; Shabani, B. ; Callaghan, D.P.</creatorcontrib><description>Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion. •Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2019.07.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian belief networks ; Beaches ; Belief networks ; Climate change ; Coastal erosion ; Coastal morphology ; Communication tools ; Computational fluid dynamics ; Configurations ; Coral reefs ; Degradation ; Elevation ; End users ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Interfaces ; Open access ; Recession ; Reefs ; Sea level ; Sea level rise ; Shorelines ; User interfaces</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2019-09, Vol.119, p.327-340</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</citedby><cites>FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Baldock, T.E.</creatorcontrib><creatorcontrib>Shabani, B.</creatorcontrib><creatorcontrib>Callaghan, D.P.</creatorcontrib><title>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</title><title>Environmental modelling &amp; software : with environment data news</title><description>Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion. •Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.</description><subject>Bayesian analysis</subject><subject>Bayesian belief networks</subject><subject>Beaches</subject><subject>Belief networks</subject><subject>Climate change</subject><subject>Coastal erosion</subject><subject>Coastal morphology</subject><subject>Communication tools</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Coral reefs</subject><subject>Degradation</subject><subject>Elevation</subject><subject>End users</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Interfaces</subject><subject>Open access</subject><subject>Recession</subject><subject>Reefs</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Shorelines</subject><subject>User interfaces</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhU1JoMk0j1C40LVdSZZsz6o0oX8Qmk2zFrJ0NZY7kaa6npR5nTxpZSb7LoQEOt-5nHuq6j1nDWe8-zg3GJ8p-aURjG8b1jeM8TfVFR_6tu560V2Ud9vJeuBKvK2uiWZWFErIq-rl4YARjLVIBLfmhBRMhFvcB_TwE5e_Kf8m8CkD0hKezBLiDpYJYTq5nNwpmqdgCUx0QFPKhYsIGemQIiGMOIXy43OhVjAjegI6jjPaBZYEdr96ItjJxB2efVYRONxl48q4FN9Vl97sCW9e7031-PXLr7vv9f3Dtx93n-9r27b9Ug-sH8eBKZTcqM4MTnLhlBODHR2yrRytV6OTW-kdk0PrWy5tpxyKbVsoq9pN9eHse8jpz7HE1XM65lhGaiEGIcvhrKjUWWVzIsro9SGXDPmkOdNrHXrWr3XotQ7Nel2WXbhPZw5LhOeAWZMNGC26kMsytEvhPw7_AHkLmlU</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Baldock, T.E.</creator><creator>Shabani, B.</creator><creator>Callaghan, D.P.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope></search><sort><creationdate>201909</creationdate><title>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</title><author>Baldock, T.E. ; Shabani, B. ; Callaghan, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian belief networks</topic><topic>Beaches</topic><topic>Belief networks</topic><topic>Climate change</topic><topic>Coastal erosion</topic><topic>Coastal morphology</topic><topic>Communication tools</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Coral reefs</topic><topic>Degradation</topic><topic>Elevation</topic><topic>End users</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Interfaces</topic><topic>Open access</topic><topic>Recession</topic><topic>Reefs</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Shorelines</topic><topic>User interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldock, T.E.</creatorcontrib><creatorcontrib>Shabani, B.</creatorcontrib><creatorcontrib>Callaghan, D.P.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldock, T.E.</au><au>Shabani, B.</au><au>Callaghan, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2019-09</date><risdate>2019</risdate><volume>119</volume><spage>327</spage><epage>340</epage><pages>327-340</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion. •Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2019.07.001</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2019-09, Vol.119, p.327-340
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2282428210
source ScienceDirect Freedom Collection 2022-2024
subjects Bayesian analysis
Bayesian belief networks
Beaches
Belief networks
Climate change
Coastal erosion
Coastal morphology
Communication tools
Computational fluid dynamics
Configurations
Coral reefs
Degradation
Elevation
End users
Fluid flow
Fluid mechanics
Hydrodynamics
Interfaces
Open access
Recession
Reefs
Sea level
Sea level rise
Shorelines
User interfaces
title Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20access%20Bayesian%20Belief%20Networks%20for%20estimating%20the%20hydrodynamics%20and%20shoreline%20response%20behind%20fringing%20reefs%20subject%20to%20climate%20changes%20and%20reef%20degradation&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Baldock,%20T.E.&rft.date=2019-09&rft.volume=119&rft.spage=327&rft.epage=340&rft.pages=327-340&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2019.07.001&rft_dat=%3Cproquest_cross%3E2282428210%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282428210&rft_id=info:pmid/&rfr_iscdi=true