Loading…
Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation
Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics...
Saved in:
Published in: | Environmental modelling & software : with environment data news 2019-09, Vol.119, p.327-340 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53 |
container_end_page | 340 |
container_issue | |
container_start_page | 327 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 119 |
creator | Baldock, T.E. Shabani, B. Callaghan, D.P. |
description | Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion.
•Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks. |
doi_str_mv | 10.1016/j.envsoft.2019.07.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282428210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815219305547</els_id><sourcerecordid>2282428210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhU1JoMk0j1C40LVdSZZsz6o0oX8Qmk2zFrJ0NZY7kaa6npR5nTxpZSb7LoQEOt-5nHuq6j1nDWe8-zg3GJ8p-aURjG8b1jeM8TfVFR_6tu560V2Ud9vJeuBKvK2uiWZWFErIq-rl4YARjLVIBLfmhBRMhFvcB_TwE5e_Kf8m8CkD0hKezBLiDpYJYTq5nNwpmqdgCUx0QFPKhYsIGemQIiGMOIXy43OhVjAjegI6jjPaBZYEdr96ItjJxB2efVYRONxl48q4FN9Vl97sCW9e7031-PXLr7vv9f3Dtx93n-9r27b9Ug-sH8eBKZTcqM4MTnLhlBODHR2yrRytV6OTW-kdk0PrWy5tpxyKbVsoq9pN9eHse8jpz7HE1XM65lhGaiEGIcvhrKjUWWVzIsro9SGXDPmkOdNrHXrWr3XotQ7Nel2WXbhPZw5LhOeAWZMNGC26kMsytEvhPw7_AHkLmlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282428210</pqid></control><display><type>article</type><title>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Baldock, T.E. ; Shabani, B. ; Callaghan, D.P.</creator><creatorcontrib>Baldock, T.E. ; Shabani, B. ; Callaghan, D.P.</creatorcontrib><description>Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion.
•Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2019.07.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian belief networks ; Beaches ; Belief networks ; Climate change ; Coastal erosion ; Coastal morphology ; Communication tools ; Computational fluid dynamics ; Configurations ; Coral reefs ; Degradation ; Elevation ; End users ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Interfaces ; Open access ; Recession ; Reefs ; Sea level ; Sea level rise ; Shorelines ; User interfaces</subject><ispartof>Environmental modelling & software : with environment data news, 2019-09, Vol.119, p.327-340</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</citedby><cites>FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Baldock, T.E.</creatorcontrib><creatorcontrib>Shabani, B.</creatorcontrib><creatorcontrib>Callaghan, D.P.</creatorcontrib><title>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</title><title>Environmental modelling & software : with environment data news</title><description>Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion.
•Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.</description><subject>Bayesian analysis</subject><subject>Bayesian belief networks</subject><subject>Beaches</subject><subject>Belief networks</subject><subject>Climate change</subject><subject>Coastal erosion</subject><subject>Coastal morphology</subject><subject>Communication tools</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Coral reefs</subject><subject>Degradation</subject><subject>Elevation</subject><subject>End users</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Interfaces</subject><subject>Open access</subject><subject>Recession</subject><subject>Reefs</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Shorelines</subject><subject>User interfaces</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhU1JoMk0j1C40LVdSZZsz6o0oX8Qmk2zFrJ0NZY7kaa6npR5nTxpZSb7LoQEOt-5nHuq6j1nDWe8-zg3GJ8p-aURjG8b1jeM8TfVFR_6tu560V2Ud9vJeuBKvK2uiWZWFErIq-rl4YARjLVIBLfmhBRMhFvcB_TwE5e_Kf8m8CkD0hKezBLiDpYJYTq5nNwpmqdgCUx0QFPKhYsIGemQIiGMOIXy43OhVjAjegI6jjPaBZYEdr96ItjJxB2efVYRONxl48q4FN9Vl97sCW9e7031-PXLr7vv9f3Dtx93n-9r27b9Ug-sH8eBKZTcqM4MTnLhlBODHR2yrRytV6OTW-kdk0PrWy5tpxyKbVsoq9pN9eHse8jpz7HE1XM65lhGaiEGIcvhrKjUWWVzIsro9SGXDPmkOdNrHXrWr3XotQ7Nel2WXbhPZw5LhOeAWZMNGC26kMsytEvhPw7_AHkLmlU</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Baldock, T.E.</creator><creator>Shabani, B.</creator><creator>Callaghan, D.P.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope></search><sort><creationdate>201909</creationdate><title>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</title><author>Baldock, T.E. ; Shabani, B. ; Callaghan, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian belief networks</topic><topic>Beaches</topic><topic>Belief networks</topic><topic>Climate change</topic><topic>Coastal erosion</topic><topic>Coastal morphology</topic><topic>Communication tools</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Coral reefs</topic><topic>Degradation</topic><topic>Elevation</topic><topic>End users</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Interfaces</topic><topic>Open access</topic><topic>Recession</topic><topic>Reefs</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Shorelines</topic><topic>User interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldock, T.E.</creatorcontrib><creatorcontrib>Shabani, B.</creatorcontrib><creatorcontrib>Callaghan, D.P.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldock, T.E.</au><au>Shabani, B.</au><au>Callaghan, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2019-09</date><risdate>2019</risdate><volume>119</volume><spage>327</spage><epage>340</epage><pages>327-340</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Reef-protected beaches are vulnerable to the effects of sea level rise and degradation of their associated fringing reefs. The SWAN hydrodynamic wave model is combined with classical theory describing the planform of beaches in equilibrium with the wave forcing to estimate the reef top hydrodynamics and the shoreline configuration in the lee of the reefs. Open access Bayesian Belief Networks with high accuracy and simple user interfaces have been built to communicate the results. The BBN enable end users to access all the model results and to compare different scenario to determine how changes in the wave climate or reef elevation change the shoreline configuration. The results show that recession of the shoreline in the lee of fringing reefs due to sea level rise may be much greater than that expected on open coast beaches. Loss of reef flat elevation can also lead to severe shoreline erosion.
•Bayesian Belief Networks are constructed for end-users to model complex coastal processes.•Models include the hydrodynamics and shoreline response behind fringing reefs.•The impact of climate change and reef degradation is considered.•Results are communicated using open-access BBNKeywords.•End-user experience was used to develop accurate and transparent networks.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2019.07.001</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2019-09, Vol.119, p.327-340 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2282428210 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bayesian analysis Bayesian belief networks Beaches Belief networks Climate change Coastal erosion Coastal morphology Communication tools Computational fluid dynamics Configurations Coral reefs Degradation Elevation End users Fluid flow Fluid mechanics Hydrodynamics Interfaces Open access Recession Reefs Sea level Sea level rise Shorelines User interfaces |
title | Open access Bayesian Belief Networks for estimating the hydrodynamics and shoreline response behind fringing reefs subject to climate changes and reef degradation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20access%20Bayesian%20Belief%20Networks%20for%20estimating%20the%20hydrodynamics%20and%20shoreline%20response%20behind%20fringing%20reefs%20subject%20to%20climate%20changes%20and%20reef%20degradation&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Baldock,%20T.E.&rft.date=2019-09&rft.volume=119&rft.spage=327&rft.epage=340&rft.pages=327-340&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2019.07.001&rft_dat=%3Cproquest_cross%3E2282428210%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-807bb805e41a56a8d412d5d28cbde094bcf5bd494fd0483f314c65de293805c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282428210&rft_id=info:pmid/&rfr_iscdi=true |