Loading…

LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry

Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solve...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2019-09, Vol.207, p.134-152
Main Authors: Eckel, Georg, Grohmann, Jasper, Cantu, Luca, Slavinskaya, Nadja, Kathrotia, Trupti, Rachner, Michael, Le Clercq, Patrick, Meier, Wolfgang, Aigner, Manfred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3
cites cdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3
container_end_page 152
container_issue
container_start_page 134
container_title Combustion and flame
container_volume 207
creator Eckel, Georg
Grohmann, Jasper
Cantu, Luca
Slavinskaya, Nadja
Kathrotia, Trupti
Rachner, Michael
Le Clercq, Patrick
Meier, Wolfgang
Aigner, Manfred
description Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.
doi_str_mv 10.1016/j.combustflame.2019.05.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282435298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019302159</els_id><sourcerecordid>2282435298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</originalsourceid><addsrcrecordid>eNqNkE9PAyEQxYnRxFr9DkTPuwLbpYs3U_8mTTyoZ0JhSKm7ywq0pv30UuvBo6eZSd68l_dD6JKSkhLKr1el9t1iHZNtVQclI1SUpC4JpUdoROuaF0wweoxGhFBSMNqQU3QW44oQMp1U1Qj5-f0r9hYrHL9caIuY1MK1bgcGf0DwEXrAcQhqi38S8JdLyyzu1m1yRc4efA99whs1-OB2Kjnf484baLHqDTaQlGuzl15C52IK23N0YlUb4eJ3jtH7w_3b7KmYvzw-z27nhZ6QSSoEb5oKuJk2lPGFVtpaAArTvBhL6gU3wgpBWW1VIwRoxUxVGd5Ynm9em2qMrg6-Q_Cfa4hJrvw69DlSMtawSVUz0WTVzUGlc9UYwMohuE6FraRE7gHLlfwLWO4BS1LLDDg_3x2eIffYOAgyage9BuMC6CSNd_-x-QYROY4m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282435298</pqid></control><display><type>article</type><title>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</title><source>Elsevier</source><creator>Eckel, Georg ; Grohmann, Jasper ; Cantu, Luca ; Slavinskaya, Nadja ; Kathrotia, Trupti ; Rachner, Michael ; Le Clercq, Patrick ; Meier, Wolfgang ; Aigner, Manfred</creator><creatorcontrib>Eckel, Georg ; Grohmann, Jasper ; Cantu, Luca ; Slavinskaya, Nadja ; Kathrotia, Trupti ; Rachner, Michael ; Le Clercq, Patrick ; Meier, Wolfgang ; Aigner, Manfred</creatorcontrib><description>Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.05.011</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Aviation fuel ; Benzene ; Chemistry ; Combustion chambers ; Computation ; Droplets ; Evaporation rate ; Finite-rate chemistry ; Kerosene ; Kerosene combustion ; Liquid phases ; Multi-component fuel ; Multi-phase LES ; Organic chemistry ; Pollutants ; Position measurement ; Soot ; Swirl-stabilized spray flame ; Temperature profiles ; Vaporization</subject><ispartof>Combustion and flame, 2019-09, Vol.207, p.134-152</ispartof><rights>2019 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</citedby><cites>FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Eckel, Georg</creatorcontrib><creatorcontrib>Grohmann, Jasper</creatorcontrib><creatorcontrib>Cantu, Luca</creatorcontrib><creatorcontrib>Slavinskaya, Nadja</creatorcontrib><creatorcontrib>Kathrotia, Trupti</creatorcontrib><creatorcontrib>Rachner, Michael</creatorcontrib><creatorcontrib>Le Clercq, Patrick</creatorcontrib><creatorcontrib>Meier, Wolfgang</creatorcontrib><creatorcontrib>Aigner, Manfred</creatorcontrib><title>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</title><title>Combustion and flame</title><description>Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.</description><subject>Aviation fuel</subject><subject>Benzene</subject><subject>Chemistry</subject><subject>Combustion chambers</subject><subject>Computation</subject><subject>Droplets</subject><subject>Evaporation rate</subject><subject>Finite-rate chemistry</subject><subject>Kerosene</subject><subject>Kerosene combustion</subject><subject>Liquid phases</subject><subject>Multi-component fuel</subject><subject>Multi-phase LES</subject><subject>Organic chemistry</subject><subject>Pollutants</subject><subject>Position measurement</subject><subject>Soot</subject><subject>Swirl-stabilized spray flame</subject><subject>Temperature profiles</subject><subject>Vaporization</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PAyEQxYnRxFr9DkTPuwLbpYs3U_8mTTyoZ0JhSKm7ywq0pv30UuvBo6eZSd68l_dD6JKSkhLKr1el9t1iHZNtVQclI1SUpC4JpUdoROuaF0wweoxGhFBSMNqQU3QW44oQMp1U1Qj5-f0r9hYrHL9caIuY1MK1bgcGf0DwEXrAcQhqi38S8JdLyyzu1m1yRc4efA99whs1-OB2Kjnf484baLHqDTaQlGuzl15C52IK23N0YlUb4eJ3jtH7w_3b7KmYvzw-z27nhZ6QSSoEb5oKuJk2lPGFVtpaAArTvBhL6gU3wgpBWW1VIwRoxUxVGd5Ynm9em2qMrg6-Q_Cfa4hJrvw69DlSMtawSVUz0WTVzUGlc9UYwMohuE6FraRE7gHLlfwLWO4BS1LLDDg_3x2eIffYOAgyage9BuMC6CSNd_-x-QYROY4m</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Eckel, Georg</creator><creator>Grohmann, Jasper</creator><creator>Cantu, Luca</creator><creator>Slavinskaya, Nadja</creator><creator>Kathrotia, Trupti</creator><creator>Rachner, Michael</creator><creator>Le Clercq, Patrick</creator><creator>Meier, Wolfgang</creator><creator>Aigner, Manfred</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201909</creationdate><title>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</title><author>Eckel, Georg ; Grohmann, Jasper ; Cantu, Luca ; Slavinskaya, Nadja ; Kathrotia, Trupti ; Rachner, Michael ; Le Clercq, Patrick ; Meier, Wolfgang ; Aigner, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aviation fuel</topic><topic>Benzene</topic><topic>Chemistry</topic><topic>Combustion chambers</topic><topic>Computation</topic><topic>Droplets</topic><topic>Evaporation rate</topic><topic>Finite-rate chemistry</topic><topic>Kerosene</topic><topic>Kerosene combustion</topic><topic>Liquid phases</topic><topic>Multi-component fuel</topic><topic>Multi-phase LES</topic><topic>Organic chemistry</topic><topic>Pollutants</topic><topic>Position measurement</topic><topic>Soot</topic><topic>Swirl-stabilized spray flame</topic><topic>Temperature profiles</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckel, Georg</creatorcontrib><creatorcontrib>Grohmann, Jasper</creatorcontrib><creatorcontrib>Cantu, Luca</creatorcontrib><creatorcontrib>Slavinskaya, Nadja</creatorcontrib><creatorcontrib>Kathrotia, Trupti</creatorcontrib><creatorcontrib>Rachner, Michael</creatorcontrib><creatorcontrib>Le Clercq, Patrick</creatorcontrib><creatorcontrib>Meier, Wolfgang</creatorcontrib><creatorcontrib>Aigner, Manfred</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckel, Georg</au><au>Grohmann, Jasper</au><au>Cantu, Luca</au><au>Slavinskaya, Nadja</au><au>Kathrotia, Trupti</au><au>Rachner, Michael</au><au>Le Clercq, Patrick</au><au>Meier, Wolfgang</au><au>Aigner, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</atitle><jtitle>Combustion and flame</jtitle><date>2019-09</date><risdate>2019</risdate><volume>207</volume><spage>134</spage><epage>152</epage><pages>134-152</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.05.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2019-09, Vol.207, p.134-152
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2282435298
source Elsevier
subjects Aviation fuel
Benzene
Chemistry
Combustion chambers
Computation
Droplets
Evaporation rate
Finite-rate chemistry
Kerosene
Kerosene combustion
Liquid phases
Multi-component fuel
Multi-phase LES
Organic chemistry
Pollutants
Position measurement
Soot
Swirl-stabilized spray flame
Temperature profiles
Vaporization
title LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LES%20of%20a%20swirl-stabilized%20kerosene%20spray%20flame%20with%20a%20multi-component%20vaporization%20model%20and%20detailed%20chemistry&rft.jtitle=Combustion%20and%20flame&rft.au=Eckel,%20Georg&rft.date=2019-09&rft.volume=207&rft.spage=134&rft.epage=152&rft.pages=134-152&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.05.011&rft_dat=%3Cproquest_cross%3E2282435298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282435298&rft_id=info:pmid/&rfr_iscdi=true