Loading…
LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry
Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solve...
Saved in:
Published in: | Combustion and flame 2019-09, Vol.207, p.134-152 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3 |
container_end_page | 152 |
container_issue | |
container_start_page | 134 |
container_title | Combustion and flame |
container_volume | 207 |
creator | Eckel, Georg Grohmann, Jasper Cantu, Luca Slavinskaya, Nadja Kathrotia, Trupti Rachner, Michael Le Clercq, Patrick Meier, Wolfgang Aigner, Manfred |
description | Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions. |
doi_str_mv | 10.1016/j.combustflame.2019.05.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282435298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019302159</els_id><sourcerecordid>2282435298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</originalsourceid><addsrcrecordid>eNqNkE9PAyEQxYnRxFr9DkTPuwLbpYs3U_8mTTyoZ0JhSKm7ywq0pv30UuvBo6eZSd68l_dD6JKSkhLKr1el9t1iHZNtVQclI1SUpC4JpUdoROuaF0wweoxGhFBSMNqQU3QW44oQMp1U1Qj5-f0r9hYrHL9caIuY1MK1bgcGf0DwEXrAcQhqi38S8JdLyyzu1m1yRc4efA99whs1-OB2Kjnf484baLHqDTaQlGuzl15C52IK23N0YlUb4eJ3jtH7w_3b7KmYvzw-z27nhZ6QSSoEb5oKuJk2lPGFVtpaAArTvBhL6gU3wgpBWW1VIwRoxUxVGd5Ynm9em2qMrg6-Q_Cfa4hJrvw69DlSMtawSVUz0WTVzUGlc9UYwMohuE6FraRE7gHLlfwLWO4BS1LLDDg_3x2eIffYOAgyage9BuMC6CSNd_-x-QYROY4m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282435298</pqid></control><display><type>article</type><title>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</title><source>Elsevier</source><creator>Eckel, Georg ; Grohmann, Jasper ; Cantu, Luca ; Slavinskaya, Nadja ; Kathrotia, Trupti ; Rachner, Michael ; Le Clercq, Patrick ; Meier, Wolfgang ; Aigner, Manfred</creator><creatorcontrib>Eckel, Georg ; Grohmann, Jasper ; Cantu, Luca ; Slavinskaya, Nadja ; Kathrotia, Trupti ; Rachner, Michael ; Le Clercq, Patrick ; Meier, Wolfgang ; Aigner, Manfred</creatorcontrib><description>Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.05.011</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Aviation fuel ; Benzene ; Chemistry ; Combustion chambers ; Computation ; Droplets ; Evaporation rate ; Finite-rate chemistry ; Kerosene ; Kerosene combustion ; Liquid phases ; Multi-component fuel ; Multi-phase LES ; Organic chemistry ; Pollutants ; Position measurement ; Soot ; Swirl-stabilized spray flame ; Temperature profiles ; Vaporization</subject><ispartof>Combustion and flame, 2019-09, Vol.207, p.134-152</ispartof><rights>2019 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</citedby><cites>FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Eckel, Georg</creatorcontrib><creatorcontrib>Grohmann, Jasper</creatorcontrib><creatorcontrib>Cantu, Luca</creatorcontrib><creatorcontrib>Slavinskaya, Nadja</creatorcontrib><creatorcontrib>Kathrotia, Trupti</creatorcontrib><creatorcontrib>Rachner, Michael</creatorcontrib><creatorcontrib>Le Clercq, Patrick</creatorcontrib><creatorcontrib>Meier, Wolfgang</creatorcontrib><creatorcontrib>Aigner, Manfred</creatorcontrib><title>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</title><title>Combustion and flame</title><description>Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.</description><subject>Aviation fuel</subject><subject>Benzene</subject><subject>Chemistry</subject><subject>Combustion chambers</subject><subject>Computation</subject><subject>Droplets</subject><subject>Evaporation rate</subject><subject>Finite-rate chemistry</subject><subject>Kerosene</subject><subject>Kerosene combustion</subject><subject>Liquid phases</subject><subject>Multi-component fuel</subject><subject>Multi-phase LES</subject><subject>Organic chemistry</subject><subject>Pollutants</subject><subject>Position measurement</subject><subject>Soot</subject><subject>Swirl-stabilized spray flame</subject><subject>Temperature profiles</subject><subject>Vaporization</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PAyEQxYnRxFr9DkTPuwLbpYs3U_8mTTyoZ0JhSKm7ywq0pv30UuvBo6eZSd68l_dD6JKSkhLKr1el9t1iHZNtVQclI1SUpC4JpUdoROuaF0wweoxGhFBSMNqQU3QW44oQMp1U1Qj5-f0r9hYrHL9caIuY1MK1bgcGf0DwEXrAcQhqi38S8JdLyyzu1m1yRc4efA99whs1-OB2Kjnf484baLHqDTaQlGuzl15C52IK23N0YlUb4eJ3jtH7w_3b7KmYvzw-z27nhZ6QSSoEb5oKuJk2lPGFVtpaAArTvBhL6gU3wgpBWW1VIwRoxUxVGd5Ynm9em2qMrg6-Q_Cfa4hJrvw69DlSMtawSVUz0WTVzUGlc9UYwMohuE6FraRE7gHLlfwLWO4BS1LLDDg_3x2eIffYOAgyage9BuMC6CSNd_-x-QYROY4m</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Eckel, Georg</creator><creator>Grohmann, Jasper</creator><creator>Cantu, Luca</creator><creator>Slavinskaya, Nadja</creator><creator>Kathrotia, Trupti</creator><creator>Rachner, Michael</creator><creator>Le Clercq, Patrick</creator><creator>Meier, Wolfgang</creator><creator>Aigner, Manfred</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201909</creationdate><title>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</title><author>Eckel, Georg ; Grohmann, Jasper ; Cantu, Luca ; Slavinskaya, Nadja ; Kathrotia, Trupti ; Rachner, Michael ; Le Clercq, Patrick ; Meier, Wolfgang ; Aigner, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aviation fuel</topic><topic>Benzene</topic><topic>Chemistry</topic><topic>Combustion chambers</topic><topic>Computation</topic><topic>Droplets</topic><topic>Evaporation rate</topic><topic>Finite-rate chemistry</topic><topic>Kerosene</topic><topic>Kerosene combustion</topic><topic>Liquid phases</topic><topic>Multi-component fuel</topic><topic>Multi-phase LES</topic><topic>Organic chemistry</topic><topic>Pollutants</topic><topic>Position measurement</topic><topic>Soot</topic><topic>Swirl-stabilized spray flame</topic><topic>Temperature profiles</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckel, Georg</creatorcontrib><creatorcontrib>Grohmann, Jasper</creatorcontrib><creatorcontrib>Cantu, Luca</creatorcontrib><creatorcontrib>Slavinskaya, Nadja</creatorcontrib><creatorcontrib>Kathrotia, Trupti</creatorcontrib><creatorcontrib>Rachner, Michael</creatorcontrib><creatorcontrib>Le Clercq, Patrick</creatorcontrib><creatorcontrib>Meier, Wolfgang</creatorcontrib><creatorcontrib>Aigner, Manfred</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckel, Georg</au><au>Grohmann, Jasper</au><au>Cantu, Luca</au><au>Slavinskaya, Nadja</au><au>Kathrotia, Trupti</au><au>Rachner, Michael</au><au>Le Clercq, Patrick</au><au>Meier, Wolfgang</au><au>Aigner, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry</atitle><jtitle>Combustion and flame</jtitle><date>2019-09</date><risdate>2019</risdate><volume>207</volume><spage>134</spage><epage>152</epage><pages>134-152</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Due to the introduction of alternative aviation fuels, new methods and models are necessary which have the capability to predict the performance of combustors dependent on the fuel composition. Towards this target, a multi-component vaporization model is coupled to a direct, detailed chemistry solver in the context of Eulerian–Lagrangian LES. By means of the computational platform, a lab-scale, swirl-stabilized spray flame is computed. The burner exhibits some of the key features of current aero-engine combustors. Global features like the measured spray distribution and the position of the reaction zone are well reproduced by the LES. The comparison of droplet size, droplet velocity and liquid volume flux profiles with experimental data also show a good agreement. However, discrepancies in the temperature profiles in the central mixing zone exist. The computational results show that evaporation and mixing are the rate-controlling steps in the flame zone. In this zone, chemistry can be assumed to be infinitely fast. However, other zones exist where finite rate chemistry effects prevail. For these states, the direct computation of the elementary reactions by means of Arrhenius equations and the transport of all individual species are beneficial. Furthermore, the finite rate chemistry approach demonstrates a great potential with respect to pollutant formation, as precursors can be directly computed. Additionally, the example of benzene forming from one specific chemical class in the fuel suggests that a multi-component description of the liquid phase and the evaporation process is required to correctly predict soot emissions.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.05.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2019-09, Vol.207, p.134-152 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2282435298 |
source | Elsevier |
subjects | Aviation fuel Benzene Chemistry Combustion chambers Computation Droplets Evaporation rate Finite-rate chemistry Kerosene Kerosene combustion Liquid phases Multi-component fuel Multi-phase LES Organic chemistry Pollutants Position measurement Soot Swirl-stabilized spray flame Temperature profiles Vaporization |
title | LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LES%20of%20a%20swirl-stabilized%20kerosene%20spray%20flame%20with%20a%20multi-component%20vaporization%20model%20and%20detailed%20chemistry&rft.jtitle=Combustion%20and%20flame&rft.au=Eckel,%20Georg&rft.date=2019-09&rft.volume=207&rft.spage=134&rft.epage=152&rft.pages=134-152&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.05.011&rft_dat=%3Cproquest_cross%3E2282435298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-96883e6d78126bcacffee1e7acfdf05b6d9f99125fa899eca2d33d68f6a8965d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282435298&rft_id=info:pmid/&rfr_iscdi=true |