Loading…
Concrete gravity dams model parameters updating using static measurements
The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring repr...
Saved in:
Published in: | Engineering structures 2019-10, Vol.196, p.109231, Article 109231 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3 |
container_end_page | |
container_issue | |
container_start_page | 109231 |
container_title | Engineering structures |
container_volume | 196 |
creator | Sevieri, Giacomo Andreini, Marco De Falco, Anna Matthies, Hermann G. |
description | The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations.
This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure. |
doi_str_mv | 10.1016/j.engstruct.2019.05.072 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282441159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029618330086</els_id><sourcerecordid>2282441159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6iha7sjybasZQh9BALdtGshS-NgEz8qyYH8fWVSuu1mhuHeO8McQh4pZBRo-dxlOBx8cLMJGQMqMygyEOyKrGgleCo449dkBTSnKTBZ3pI77zsAYFUFK7LbjoNxGDA5OH1qwzmxuvdJP1o8JpN2uo-a88k8WR3a4ZDMfqk-xMkkPWo_O-xxCP6e3DT66PHht6_J1-vL5_Y93X-87babfWq4ZCE1wK1GWueSl3XNtZRS1Fw0sgRpilxCxXkjamtoY2vgAmrJrGG0oFERoPmaPF32Tm78ntEH1Y2zG-JJxVjF8pzSQkaXuLiMG7132KjJtb12Z0VBLdxUp_64qYWbgkJFbjG5uSQxPnFq0SlvWhwM2tZh9Nqx_XfHDzDVe7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282441159</pqid></control><display><type>article</type><title>Concrete gravity dams model parameters updating using static measurements</title><source>Elsevier</source><creator>Sevieri, Giacomo ; Andreini, Marco ; De Falco, Anna ; Matthies, Hermann G.</creator><creatorcontrib>Sevieri, Giacomo ; Andreini, Marco ; De Falco, Anna ; Matthies, Hermann G.</creatorcontrib><description>The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations.
This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2019.05.072</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian updating ; Computer applications ; Concrete dams ; Dams ; Feasibility studies ; Finite element method ; Fourier analysis ; General polynomial chaos expansion ; Gravity dams ; Mathematical models ; Model parameters identification ; Monitoring ; Numerical models ; Parameters ; Prediction models ; Probabilistic models</subject><ispartof>Engineering structures, 2019-10, Vol.196, p.109231, Article 109231</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</citedby><cites>FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</cites><orcidid>0000-0002-1856-7908 ; 0000-0001-8474-4397 ; 0000-0003-1721-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sevieri, Giacomo</creatorcontrib><creatorcontrib>Andreini, Marco</creatorcontrib><creatorcontrib>De Falco, Anna</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><title>Concrete gravity dams model parameters updating using static measurements</title><title>Engineering structures</title><description>The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations.
This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.</description><subject>Bayesian analysis</subject><subject>Bayesian updating</subject><subject>Computer applications</subject><subject>Concrete dams</subject><subject>Dams</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>Fourier analysis</subject><subject>General polynomial chaos expansion</subject><subject>Gravity dams</subject><subject>Mathematical models</subject><subject>Model parameters identification</subject><subject>Monitoring</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Probabilistic models</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6iha7sjybasZQh9BALdtGshS-NgEz8qyYH8fWVSuu1mhuHeO8McQh4pZBRo-dxlOBx8cLMJGQMqMygyEOyKrGgleCo449dkBTSnKTBZ3pI77zsAYFUFK7LbjoNxGDA5OH1qwzmxuvdJP1o8JpN2uo-a88k8WR3a4ZDMfqk-xMkkPWo_O-xxCP6e3DT66PHht6_J1-vL5_Y93X-87babfWq4ZCE1wK1GWueSl3XNtZRS1Fw0sgRpilxCxXkjamtoY2vgAmrJrGG0oFERoPmaPF32Tm78ntEH1Y2zG-JJxVjF8pzSQkaXuLiMG7132KjJtb12Z0VBLdxUp_64qYWbgkJFbjG5uSQxPnFq0SlvWhwM2tZh9Nqx_XfHDzDVe7M</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Sevieri, Giacomo</creator><creator>Andreini, Marco</creator><creator>De Falco, Anna</creator><creator>Matthies, Hermann G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1856-7908</orcidid><orcidid>https://orcid.org/0000-0001-8474-4397</orcidid><orcidid>https://orcid.org/0000-0003-1721-7719</orcidid></search><sort><creationdate>20191001</creationdate><title>Concrete gravity dams model parameters updating using static measurements</title><author>Sevieri, Giacomo ; Andreini, Marco ; De Falco, Anna ; Matthies, Hermann G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian updating</topic><topic>Computer applications</topic><topic>Concrete dams</topic><topic>Dams</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>Fourier analysis</topic><topic>General polynomial chaos expansion</topic><topic>Gravity dams</topic><topic>Mathematical models</topic><topic>Model parameters identification</topic><topic>Monitoring</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Probabilistic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevieri, Giacomo</creatorcontrib><creatorcontrib>Andreini, Marco</creatorcontrib><creatorcontrib>De Falco, Anna</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevieri, Giacomo</au><au>Andreini, Marco</au><au>De Falco, Anna</au><au>Matthies, Hermann G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concrete gravity dams model parameters updating using static measurements</atitle><jtitle>Engineering structures</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>196</volume><spage>109231</spage><pages>109231-</pages><artnum>109231</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations.
This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2019.05.072</doi><orcidid>https://orcid.org/0000-0002-1856-7908</orcidid><orcidid>https://orcid.org/0000-0001-8474-4397</orcidid><orcidid>https://orcid.org/0000-0003-1721-7719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2019-10, Vol.196, p.109231, Article 109231 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2282441159 |
source | Elsevier |
subjects | Bayesian analysis Bayesian updating Computer applications Concrete dams Dams Feasibility studies Finite element method Fourier analysis General polynomial chaos expansion Gravity dams Mathematical models Model parameters identification Monitoring Numerical models Parameters Prediction models Probabilistic models |
title | Concrete gravity dams model parameters updating using static measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concrete%20gravity%20dams%20model%20parameters%20updating%20using%20static%20measurements&rft.jtitle=Engineering%20structures&rft.au=Sevieri,%20Giacomo&rft.date=2019-10-01&rft.volume=196&rft.spage=109231&rft.pages=109231-&rft.artnum=109231&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2019.05.072&rft_dat=%3Cproquest_cross%3E2282441159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282441159&rft_id=info:pmid/&rfr_iscdi=true |