Loading…

Concrete gravity dams model parameters updating using static measurements

The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring repr...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures 2019-10, Vol.196, p.109231, Article 109231
Main Authors: Sevieri, Giacomo, Andreini, Marco, De Falco, Anna, Matthies, Hermann G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3
cites cdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3
container_end_page
container_issue
container_start_page 109231
container_title Engineering structures
container_volume 196
creator Sevieri, Giacomo
Andreini, Marco
De Falco, Anna
Matthies, Hermann G.
description The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations. This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.
doi_str_mv 10.1016/j.engstruct.2019.05.072
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2282441159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029618330086</els_id><sourcerecordid>2282441159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6iha7sjybasZQh9BALdtGshS-NgEz8qyYH8fWVSuu1mhuHeO8McQh4pZBRo-dxlOBx8cLMJGQMqMygyEOyKrGgleCo449dkBTSnKTBZ3pI77zsAYFUFK7LbjoNxGDA5OH1qwzmxuvdJP1o8JpN2uo-a88k8WR3a4ZDMfqk-xMkkPWo_O-xxCP6e3DT66PHht6_J1-vL5_Y93X-87babfWq4ZCE1wK1GWueSl3XNtZRS1Fw0sgRpilxCxXkjamtoY2vgAmrJrGG0oFERoPmaPF32Tm78ntEH1Y2zG-JJxVjF8pzSQkaXuLiMG7132KjJtb12Z0VBLdxUp_64qYWbgkJFbjG5uSQxPnFq0SlvWhwM2tZh9Nqx_XfHDzDVe7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282441159</pqid></control><display><type>article</type><title>Concrete gravity dams model parameters updating using static measurements</title><source>Elsevier</source><creator>Sevieri, Giacomo ; Andreini, Marco ; De Falco, Anna ; Matthies, Hermann G.</creator><creatorcontrib>Sevieri, Giacomo ; Andreini, Marco ; De Falco, Anna ; Matthies, Hermann G.</creatorcontrib><description>The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations. This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2019.05.072</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian updating ; Computer applications ; Concrete dams ; Dams ; Feasibility studies ; Finite element method ; Fourier analysis ; General polynomial chaos expansion ; Gravity dams ; Mathematical models ; Model parameters identification ; Monitoring ; Numerical models ; Parameters ; Prediction models ; Probabilistic models</subject><ispartof>Engineering structures, 2019-10, Vol.196, p.109231, Article 109231</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</citedby><cites>FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</cites><orcidid>0000-0002-1856-7908 ; 0000-0001-8474-4397 ; 0000-0003-1721-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sevieri, Giacomo</creatorcontrib><creatorcontrib>Andreini, Marco</creatorcontrib><creatorcontrib>De Falco, Anna</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><title>Concrete gravity dams model parameters updating using static measurements</title><title>Engineering structures</title><description>The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations. This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.</description><subject>Bayesian analysis</subject><subject>Bayesian updating</subject><subject>Computer applications</subject><subject>Concrete dams</subject><subject>Dams</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>Fourier analysis</subject><subject>General polynomial chaos expansion</subject><subject>Gravity dams</subject><subject>Mathematical models</subject><subject>Model parameters identification</subject><subject>Monitoring</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Probabilistic models</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6iha7sjybasZQh9BALdtGshS-NgEz8qyYH8fWVSuu1mhuHeO8McQh4pZBRo-dxlOBx8cLMJGQMqMygyEOyKrGgleCo449dkBTSnKTBZ3pI77zsAYFUFK7LbjoNxGDA5OH1qwzmxuvdJP1o8JpN2uo-a88k8WR3a4ZDMfqk-xMkkPWo_O-xxCP6e3DT66PHht6_J1-vL5_Y93X-87babfWq4ZCE1wK1GWueSl3XNtZRS1Fw0sgRpilxCxXkjamtoY2vgAmrJrGG0oFERoPmaPF32Tm78ntEH1Y2zG-JJxVjF8pzSQkaXuLiMG7132KjJtb12Z0VBLdxUp_64qYWbgkJFbjG5uSQxPnFq0SlvWhwM2tZh9Nqx_XfHDzDVe7M</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Sevieri, Giacomo</creator><creator>Andreini, Marco</creator><creator>De Falco, Anna</creator><creator>Matthies, Hermann G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1856-7908</orcidid><orcidid>https://orcid.org/0000-0001-8474-4397</orcidid><orcidid>https://orcid.org/0000-0003-1721-7719</orcidid></search><sort><creationdate>20191001</creationdate><title>Concrete gravity dams model parameters updating using static measurements</title><author>Sevieri, Giacomo ; Andreini, Marco ; De Falco, Anna ; Matthies, Hermann G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian updating</topic><topic>Computer applications</topic><topic>Concrete dams</topic><topic>Dams</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>Fourier analysis</topic><topic>General polynomial chaos expansion</topic><topic>Gravity dams</topic><topic>Mathematical models</topic><topic>Model parameters identification</topic><topic>Monitoring</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Probabilistic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevieri, Giacomo</creatorcontrib><creatorcontrib>Andreini, Marco</creatorcontrib><creatorcontrib>De Falco, Anna</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevieri, Giacomo</au><au>Andreini, Marco</au><au>De Falco, Anna</au><au>Matthies, Hermann G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concrete gravity dams model parameters updating using static measurements</atitle><jtitle>Engineering structures</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>196</volume><spage>109231</spage><pages>109231-</pages><artnum>109231</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>The structural control of concrete gravity dams is of primary importance. In this context, numerical models play a fundamental role both to assess the vulnerability of gravity dams and to control their behaviour during normal operativity and after extreme events. In this regard, data monitoring represents an important source of information for numerical model calibrations. This study proposes a novel probabilistic procedure, defined in the Bayesian framework, to calibrate the parameters of finite elements models of dams. To this aim, monitoring data and the results of material tests are used as reference information. The computational burden is reduced by using a new hybrid-predictive model of the dam displacements. An application on an Italian dam shows the feasibility of the proposed procedure.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2019.05.072</doi><orcidid>https://orcid.org/0000-0002-1856-7908</orcidid><orcidid>https://orcid.org/0000-0001-8474-4397</orcidid><orcidid>https://orcid.org/0000-0003-1721-7719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2019-10, Vol.196, p.109231, Article 109231
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2282441159
source Elsevier
subjects Bayesian analysis
Bayesian updating
Computer applications
Concrete dams
Dams
Feasibility studies
Finite element method
Fourier analysis
General polynomial chaos expansion
Gravity dams
Mathematical models
Model parameters identification
Monitoring
Numerical models
Parameters
Prediction models
Probabilistic models
title Concrete gravity dams model parameters updating using static measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concrete%20gravity%20dams%20model%20parameters%20updating%20using%20static%20measurements&rft.jtitle=Engineering%20structures&rft.au=Sevieri,%20Giacomo&rft.date=2019-10-01&rft.volume=196&rft.spage=109231&rft.pages=109231-&rft.artnum=109231&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2019.05.072&rft_dat=%3Cproquest_cross%3E2282441159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-c03dae1b4936bb3a9997b37f9609c5490833f7bdc1fdb0370b92dc215108370a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282441159&rft_id=info:pmid/&rfr_iscdi=true