Loading…

The Gravity First (on Reincarnation of Third Kepler’s Law)

About four centuries ago, considering flat sections of cone x 2 + y 2 = z 2 (along the axis of revolution on the plane Oxy ), Robert Hooke wrote one fundamental differential equation ( x , y , z ) ″ = − 4 π 2 k ( x 2 + y 2 + z 2 ) 3 ⋅ ( x , y , z ) , which thereafter set the foundation of the law of...

Full description

Saved in:
Bibliographic Details
Published in:Moscow University mathematics bulletin 2019-07, Vol.74 (4), p.147-158
Main Authors: Gerasimova, O. V., Razmyslov, Yu. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-488aab46199cca71a0b2272d2aefcf19294a64b5caebf81ddc5de75d4b7887e63
container_end_page 158
container_issue 4
container_start_page 147
container_title Moscow University mathematics bulletin
container_volume 74
creator Gerasimova, O. V.
Razmyslov, Yu. P.
description About four centuries ago, considering flat sections of cone x 2 + y 2 = z 2 (along the axis of revolution on the plane Oxy ), Robert Hooke wrote one fundamental differential equation ( x , y , z ) ″ = − 4 π 2 k ( x 2 + y 2 + z 2 ) 3 ⋅ ( x , y , z ) , which thereafter set the foundation of the law of universal gravitation and explanation of movement of charged particle in the classical stationary Coulomb field. In this paper, differential-algebraic models arising as the result of replacement of a cone by an arbitrary quadric surface F ( x, y, z ) = 0 with respect to (as we call it) the Kepler parametrization of quadratic curves { F ( x, y, α · x + β · y + δ )=0 | α, β, δ ∈ K }, K = ℝ, ℂ, are proposed and studied.
doi_str_mv 10.3103/S002713221904003X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2283265489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283265489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-488aab46199cca71a0b2272d2aefcf19294a64b5caebf81ddc5de75d4b7887e63</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuAG11Uk5e0TcCNDDOjWBB0BHflNU2dDrWtSUeZnb_h7_kldqjgQlw9Lveey-MScszZueBMXDwwBjEXAFwzyZh42iEjroUMlJRyl4y2drD198mB9yvGwlBLPiKXi6Wlc4dvZbehs9L5jp42Nb23ZW3Q1diVvWoKuliWLqe3tq2s-_r49DTB97NDsldg5e3Rzx2Tx9l0MbkOkrv5zeQqCQxEqgukUoiZjLjWxmDMkWUAMeSAtjAF16AlRjILDdqsUDzPTZjbOMxlFisV20iMycnQ27rmdW19l66adf9c5VMAJSAKpdJ9ig8p4xrvnS3S1pUv6DYpZ-l2pPTPSD0DA-P7bP1s3W_z_9A3zX5odw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283265489</pqid></control><display><type>article</type><title>The Gravity First (on Reincarnation of Third Kepler’s Law)</title><source>Springer Nature</source><creator>Gerasimova, O. V. ; Razmyslov, Yu. P.</creator><creatorcontrib>Gerasimova, O. V. ; Razmyslov, Yu. P.</creatorcontrib><description>About four centuries ago, considering flat sections of cone x 2 + y 2 = z 2 (along the axis of revolution on the plane Oxy ), Robert Hooke wrote one fundamental differential equation ( x , y , z ) ″ = − 4 π 2 k ( x 2 + y 2 + z 2 ) 3 ⋅ ( x , y , z ) , which thereafter set the foundation of the law of universal gravitation and explanation of movement of charged particle in the classical stationary Coulomb field. In this paper, differential-algebraic models arising as the result of replacement of a cone by an arbitrary quadric surface F ( x, y, z ) = 0 with respect to (as we call it) the Kepler parametrization of quadratic curves { F ( x, y, α · x + β · y + δ )=0 | α, β, δ ∈ K }, K = ℝ, ℂ, are proposed and studied.</description><identifier>ISSN: 0027-1322</identifier><identifier>EISSN: 1934-8444</identifier><identifier>DOI: 10.3103/S002713221904003X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Charged particles ; Differential equations ; Kepler laws ; Mathematics ; Mathematics and Statistics ; Parameterization</subject><ispartof>Moscow University mathematics bulletin, 2019-07, Vol.74 (4), p.147-158</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-488aab46199cca71a0b2272d2aefcf19294a64b5caebf81ddc5de75d4b7887e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerasimova, O. V.</creatorcontrib><creatorcontrib>Razmyslov, Yu. P.</creatorcontrib><title>The Gravity First (on Reincarnation of Third Kepler’s Law)</title><title>Moscow University mathematics bulletin</title><addtitle>Moscow Univ. Math. Bull</addtitle><description>About four centuries ago, considering flat sections of cone x 2 + y 2 = z 2 (along the axis of revolution on the plane Oxy ), Robert Hooke wrote one fundamental differential equation ( x , y , z ) ″ = − 4 π 2 k ( x 2 + y 2 + z 2 ) 3 ⋅ ( x , y , z ) , which thereafter set the foundation of the law of universal gravitation and explanation of movement of charged particle in the classical stationary Coulomb field. In this paper, differential-algebraic models arising as the result of replacement of a cone by an arbitrary quadric surface F ( x, y, z ) = 0 with respect to (as we call it) the Kepler parametrization of quadratic curves { F ( x, y, α · x + β · y + δ )=0 | α, β, δ ∈ K }, K = ℝ, ℂ, are proposed and studied.</description><subject>Analysis</subject><subject>Charged particles</subject><subject>Differential equations</subject><subject>Kepler laws</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameterization</subject><issn>0027-1322</issn><issn>1934-8444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI5-gLuAG11Uk5e0TcCNDDOjWBB0BHflNU2dDrWtSUeZnb_h7_kldqjgQlw9Lveey-MScszZueBMXDwwBjEXAFwzyZh42iEjroUMlJRyl4y2drD198mB9yvGwlBLPiKXi6Wlc4dvZbehs9L5jp42Nb23ZW3Q1diVvWoKuliWLqe3tq2s-_r49DTB97NDsldg5e3Rzx2Tx9l0MbkOkrv5zeQqCQxEqgukUoiZjLjWxmDMkWUAMeSAtjAF16AlRjILDdqsUDzPTZjbOMxlFisV20iMycnQ27rmdW19l66adf9c5VMAJSAKpdJ9ig8p4xrvnS3S1pUv6DYpZ-l2pPTPSD0DA-P7bP1s3W_z_9A3zX5odw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Gerasimova, O. V.</creator><creator>Razmyslov, Yu. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>The Gravity First (on Reincarnation of Third Kepler’s Law)</title><author>Gerasimova, O. V. ; Razmyslov, Yu. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-488aab46199cca71a0b2272d2aefcf19294a64b5caebf81ddc5de75d4b7887e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Charged particles</topic><topic>Differential equations</topic><topic>Kepler laws</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerasimova, O. V.</creatorcontrib><creatorcontrib>Razmyslov, Yu. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University mathematics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerasimova, O. V.</au><au>Razmyslov, Yu. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Gravity First (on Reincarnation of Third Kepler’s Law)</atitle><jtitle>Moscow University mathematics bulletin</jtitle><stitle>Moscow Univ. Math. Bull</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>74</volume><issue>4</issue><spage>147</spage><epage>158</epage><pages>147-158</pages><issn>0027-1322</issn><eissn>1934-8444</eissn><abstract>About four centuries ago, considering flat sections of cone x 2 + y 2 = z 2 (along the axis of revolution on the plane Oxy ), Robert Hooke wrote one fundamental differential equation ( x , y , z ) ″ = − 4 π 2 k ( x 2 + y 2 + z 2 ) 3 ⋅ ( x , y , z ) , which thereafter set the foundation of the law of universal gravitation and explanation of movement of charged particle in the classical stationary Coulomb field. In this paper, differential-algebraic models arising as the result of replacement of a cone by an arbitrary quadric surface F ( x, y, z ) = 0 with respect to (as we call it) the Kepler parametrization of quadratic curves { F ( x, y, α · x + β · y + δ )=0 | α, β, δ ∈ K }, K = ℝ, ℂ, are proposed and studied.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S002713221904003X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-1322
ispartof Moscow University mathematics bulletin, 2019-07, Vol.74 (4), p.147-158
issn 0027-1322
1934-8444
language eng
recordid cdi_proquest_journals_2283265489
source Springer Nature
subjects Analysis
Charged particles
Differential equations
Kepler laws
Mathematics
Mathematics and Statistics
Parameterization
title The Gravity First (on Reincarnation of Third Kepler’s Law)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Gravity%20First%20(on%20Reincarnation%20of%20Third%20Kepler%E2%80%99s%20Law)&rft.jtitle=Moscow%20University%20mathematics%20bulletin&rft.au=Gerasimova,%20O.%20V.&rft.date=2019-07-01&rft.volume=74&rft.issue=4&rft.spage=147&rft.epage=158&rft.pages=147-158&rft.issn=0027-1322&rft.eissn=1934-8444&rft_id=info:doi/10.3103/S002713221904003X&rft_dat=%3Cproquest_cross%3E2283265489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-488aab46199cca71a0b2272d2aefcf19294a64b5caebf81ddc5de75d4b7887e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2283265489&rft_id=info:pmid/&rfr_iscdi=true