Loading…

An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model

Ternary content addressable memories (TCAMs) represent a form of logic-in-memory and are currently widely used in routers, caches, and efficient machine learning models. From a technology prospective, researchers have begun to consider various non-volatile (NV) memory technologies to design NV TCAMs...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-09, Vol.66 (9), p.1577-1581
Main Authors: Yin, Xunzhao, Ni, Kai, Reis, Dayane, Datta, Suman, Niemier, Michael, Hu, Xiaobo Sharon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763
cites cdi_FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763
container_end_page 1581
container_issue 9
container_start_page 1577
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 66
creator Yin, Xunzhao
Ni, Kai
Reis, Dayane
Datta, Suman
Niemier, Michael
Hu, Xiaobo Sharon
description Ternary content addressable memories (TCAMs) represent a form of logic-in-memory and are currently widely used in routers, caches, and efficient machine learning models. From a technology prospective, researchers have begun to consider various non-volatile (NV) memory technologies to design NV TCAMs that may offer improvements with respect to figures of merit, such as energy and delay when compared to conventional CMOS designs. Among these devices, ferroelectric field effect transistors (FeFETs) stand out due to their high ION/IOFF ratio, efficient voltage-driven write mechanism, low-cost, and CMOS-compatible fabrication process. We propose a 2FeFET TCAM design based on a state-of-the-art, experimentally calibrated FeFET model. We evaluate and compare our design with other TCAMs at the cell and array levels. Our results suggest that a 2FeFET TCAM requires 3.5×/3200× less write energy than CMOS/resistive random access memory (ReRAM) TCAMs, respectively. The cell area is 13% of that of a CMOS TCAM, and is on par with ReRAM designs. The search energy-delay-product of a 2FeFET TCAM is also 4.1×/2.8× less than CMOS/ReRAM TCAMs, respectively.
doi_str_mv 10.1109/TCSII.2018.2889225
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2283374641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8585162</ieee_id><sourcerecordid>2283374641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwArBYYk6xz3ZsjyVtIVIrBtrZctMLSpUmxU4H3p6UVEz3S_f9d9JHyCNnE86ZfVlnn3k-AcbNBIyxAOqKjLhSJhHa8utzljbRWupbchfjnjGwTMCIzKcN3dRd8MkMm4gUFriYr-k6m67oDGP11dBXH3FH24Z6ujrVXZXM2oOvGjqQq3aH9T25KX0d8eEyx2TT77L3ZPnxlmfTZVIIKbukAO0lSF2U3hRSpaZkqbI6ZRJQgC28tFKnUpmt1ABY8t12axQrUTHUWqdiTJ6Hu8fQfp8wdm7fnkLTv3QARggtU8l7CgaqCG2MAUt3DNXBhx_HmTvrcn-63FmXu-jqS09DqULE_4JRRvEUxC_Q8mHe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283374641</pqid></control><display><type>article</type><title>An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Xunzhao ; Ni, Kai ; Reis, Dayane ; Datta, Suman ; Niemier, Michael ; Hu, Xiaobo Sharon</creator><creatorcontrib>Yin, Xunzhao ; Ni, Kai ; Reis, Dayane ; Datta, Suman ; Niemier, Michael ; Hu, Xiaobo Sharon</creatorcontrib><description>Ternary content addressable memories (TCAMs) represent a form of logic-in-memory and are currently widely used in routers, caches, and efficient machine learning models. From a technology prospective, researchers have begun to consider various non-volatile (NV) memory technologies to design NV TCAMs that may offer improvements with respect to figures of merit, such as energy and delay when compared to conventional CMOS designs. Among these devices, ferroelectric field effect transistors (FeFETs) stand out due to their high ION/IOFF ratio, efficient voltage-driven write mechanism, low-cost, and CMOS-compatible fabrication process. We propose a 2FeFET TCAM design based on a state-of-the-art, experimentally calibrated FeFET model. We evaluate and compare our design with other TCAMs at the cell and array levels. Our results suggest that a 2FeFET TCAM requires 3.5×/3200× less write energy than CMOS/resistive random access memory (ReRAM) TCAMs, respectively. The cell area is 13% of that of a CMOS TCAM, and is on par with ReRAM designs. The search energy-delay-product of a 2FeFET TCAM is also 4.1×/2.8× less than CMOS/ReRAM TCAMs, respectively.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2018.2889225</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Associative memory ; CMOS ; content addressable storage ; Delay ; Delays ; ferroelectric device ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; Hysteresis ; Iron ; Logic gates ; Machine learning ; Nonvolatile memory ; Random access memory ; Resistance ; Routers ; Semiconductor device modeling ; Semiconductor devices ; Transistors</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-09, Vol.66 (9), p.1577-1581</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763</citedby><cites>FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763</cites><orcidid>0000-0002-8571-1308 ; 0000-0002-6636-9738 ; 0000-0003-4656-9545 ; 0000-0002-3628-3431 ; 0000-0001-6044-5173 ; 0000-0001-7776-4306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8585162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yin, Xunzhao</creatorcontrib><creatorcontrib>Ni, Kai</creatorcontrib><creatorcontrib>Reis, Dayane</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Niemier, Michael</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><title>An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Ternary content addressable memories (TCAMs) represent a form of logic-in-memory and are currently widely used in routers, caches, and efficient machine learning models. From a technology prospective, researchers have begun to consider various non-volatile (NV) memory technologies to design NV TCAMs that may offer improvements with respect to figures of merit, such as energy and delay when compared to conventional CMOS designs. Among these devices, ferroelectric field effect transistors (FeFETs) stand out due to their high ION/IOFF ratio, efficient voltage-driven write mechanism, low-cost, and CMOS-compatible fabrication process. We propose a 2FeFET TCAM design based on a state-of-the-art, experimentally calibrated FeFET model. We evaluate and compare our design with other TCAMs at the cell and array levels. Our results suggest that a 2FeFET TCAM requires 3.5×/3200× less write energy than CMOS/resistive random access memory (ReRAM) TCAMs, respectively. The cell area is 13% of that of a CMOS TCAM, and is on par with ReRAM designs. The search energy-delay-product of a 2FeFET TCAM is also 4.1×/2.8× less than CMOS/ReRAM TCAMs, respectively.</description><subject>Associative memory</subject><subject>CMOS</subject><subject>content addressable storage</subject><subject>Delay</subject><subject>Delays</subject><subject>ferroelectric device</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>Hysteresis</subject><subject>Iron</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Nonvolatile memory</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Routers</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqXwArBYYk6xz3ZsjyVtIVIrBtrZctMLSpUmxU4H3p6UVEz3S_f9d9JHyCNnE86ZfVlnn3k-AcbNBIyxAOqKjLhSJhHa8utzljbRWupbchfjnjGwTMCIzKcN3dRd8MkMm4gUFriYr-k6m67oDGP11dBXH3FH24Z6ujrVXZXM2oOvGjqQq3aH9T25KX0d8eEyx2TT77L3ZPnxlmfTZVIIKbukAO0lSF2U3hRSpaZkqbI6ZRJQgC28tFKnUpmt1ABY8t12axQrUTHUWqdiTJ6Hu8fQfp8wdm7fnkLTv3QARggtU8l7CgaqCG2MAUt3DNXBhx_HmTvrcn-63FmXu-jqS09DqULE_4JRRvEUxC_Q8mHe</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yin, Xunzhao</creator><creator>Ni, Kai</creator><creator>Reis, Dayane</creator><creator>Datta, Suman</creator><creator>Niemier, Michael</creator><creator>Hu, Xiaobo Sharon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8571-1308</orcidid><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0003-4656-9545</orcidid><orcidid>https://orcid.org/0000-0002-3628-3431</orcidid><orcidid>https://orcid.org/0000-0001-6044-5173</orcidid><orcidid>https://orcid.org/0000-0001-7776-4306</orcidid></search><sort><creationdate>20190901</creationdate><title>An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model</title><author>Yin, Xunzhao ; Ni, Kai ; Reis, Dayane ; Datta, Suman ; Niemier, Michael ; Hu, Xiaobo Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Associative memory</topic><topic>CMOS</topic><topic>content addressable storage</topic><topic>Delay</topic><topic>Delays</topic><topic>ferroelectric device</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>Hysteresis</topic><topic>Iron</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Nonvolatile memory</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Routers</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xunzhao</creatorcontrib><creatorcontrib>Ni, Kai</creatorcontrib><creatorcontrib>Reis, Dayane</creatorcontrib><creatorcontrib>Datta, Suman</creatorcontrib><creatorcontrib>Niemier, Michael</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xunzhao</au><au>Ni, Kai</au><au>Reis, Dayane</au><au>Datta, Suman</au><au>Niemier, Michael</au><au>Hu, Xiaobo Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>66</volume><issue>9</issue><spage>1577</spage><epage>1581</epage><pages>1577-1581</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>Ternary content addressable memories (TCAMs) represent a form of logic-in-memory and are currently widely used in routers, caches, and efficient machine learning models. From a technology prospective, researchers have begun to consider various non-volatile (NV) memory technologies to design NV TCAMs that may offer improvements with respect to figures of merit, such as energy and delay when compared to conventional CMOS designs. Among these devices, ferroelectric field effect transistors (FeFETs) stand out due to their high ION/IOFF ratio, efficient voltage-driven write mechanism, low-cost, and CMOS-compatible fabrication process. We propose a 2FeFET TCAM design based on a state-of-the-art, experimentally calibrated FeFET model. We evaluate and compare our design with other TCAMs at the cell and array levels. Our results suggest that a 2FeFET TCAM requires 3.5×/3200× less write energy than CMOS/resistive random access memory (ReRAM) TCAMs, respectively. The cell area is 13% of that of a CMOS TCAM, and is on par with ReRAM designs. The search energy-delay-product of a 2FeFET TCAM is also 4.1×/2.8× less than CMOS/ReRAM TCAMs, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2018.2889225</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8571-1308</orcidid><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0003-4656-9545</orcidid><orcidid>https://orcid.org/0000-0002-3628-3431</orcidid><orcidid>https://orcid.org/0000-0001-6044-5173</orcidid><orcidid>https://orcid.org/0000-0001-7776-4306</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2019-09, Vol.66 (9), p.1577-1581
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2283374641
source IEEE Electronic Library (IEL) Journals
subjects Associative memory
CMOS
content addressable storage
Delay
Delays
ferroelectric device
Ferroelectric materials
Ferroelectricity
Field effect transistors
Hysteresis
Iron
Logic gates
Machine learning
Nonvolatile memory
Random access memory
Resistance
Routers
Semiconductor device modeling
Semiconductor devices
Transistors
title An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultra-Dense%202FeFET%20TCAM%20Design%20Based%20on%20a%20Multi-Domain%20FeFET%20Model&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Yin,%20Xunzhao&rft.date=2019-09-01&rft.volume=66&rft.issue=9&rft.spage=1577&rft.epage=1581&rft.pages=1577-1581&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2018.2889225&rft_dat=%3Cproquest_ieee_%3E2283374641%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-c27a4247cfa8c4568f065976042e329ca49476458b4722ef1dbb850fe50e77763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2283374641&rft_id=info:pmid/&rft_ieee_id=8585162&rfr_iscdi=true