Loading…

Thermal, fire, and mechanical properties of solvent‐free processed BN/boehmite‐filled prepregs

Within the scope of this research, platelet‐shaped hexagonal Boron Nitride (h‐BN) with a size of 2 and 12 μm, and oval‐shaped Boehmite (BT) with a size of 2 μm were incorporated in a glass fiber‐reinforced epoxy novolac matrix cured with a diamine‐based hardener. The effects of the platelet size (BN...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2019-09, Vol.59 (9), p.1840-1852
Main Authors: Pawelski‐Hoell, Christin, Bhagwat, Sagar, Altstädt, Volker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Within the scope of this research, platelet‐shaped hexagonal Boron Nitride (h‐BN) with a size of 2 and 12 μm, and oval‐shaped Boehmite (BT) with a size of 2 μm were incorporated in a glass fiber‐reinforced epoxy novolac matrix cured with a diamine‐based hardener. The effects of the platelet size (BN 2 and 12 μm) and filler nature (BT vs. BN) were correlated with the final thermal and fire‐related properties. The incorporation of the fillers shows that not only the thermal conductivity (σ) was increased from approximately 0.2 up to 1.04 W/mK (through‐plane) but also the flame retardancy was improved by using a hybrid combination. The time to ignition (tig) was increased by 48 s and the FIGRA value was decreased from 6.5 to 3.3 indicating a much lower fire hazard for the material. scanning electron microscopic micrographs of the laminate cross sections show that the fillers are distributed and oriented randomly in the fiber‐reinforced matrix, and also highlight the fiber wetting. Furthermore, the results show that the resulting 3D filler network and infiltration of the intratow regions is strongly dependent on lateral filler size and filler combination. With increasing the filler aspect ratio, the effect on thermal properties and filtration is more evident. Moreover, the hybrid combination of BN and Boehmite fillers has a strong effect on the network formation during processing, resulting in enhanced thermal and mechanical properties. A synergy was observed when using BN 12 μm in combination with Boehmite 2 μm as the larger platelets tend to assemble themselves in the intertow region (resin‐rich region) and the smaller particles infiltrate into the intratow regions. This leads to a formation of a thermal pathway throughout the glass fabric barrier. Considering the cost factor, the through‐plane (z‐direction) heat dissipation and the flame retardancy can be tailored by optimizing the size, aspect ratio/geometry, and nature of the fillers. POLYM. ENG. SCI., 59:1840–1852, 2019. © 2019 The Authors. Polymer Engineering & Science published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.25184