Loading…

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2019-09, Vol.126 (9)
Main Authors: Nagashima, G., Kurokawa, Y., Zhong, Y., Horiike, S., Schönke, D., Krautscheid, P., Reeve, R., Kläui, M., Inagaki, Y., Kawae, T., Tanaka, T., Matsuyama, K., Ohnishi, K., Kimura, T., Yuasa, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in Landau–Lifshitz–Gilbert simulations, suggesting the possibility of using both AFM and FM properties by controlling the quasi-AFM domain size.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5117869