Loading…

Systematic Hydrogen‐Bond Manipulations To Establish Polysaccharide Structure–Property Correlations

A dense hydrogen‐bond network is responsible for the mechanical and structural properties of polysaccharides. Random derivatization alters the properties of the bulk material by disrupting the hydrogen bonds, but obstructs detailed structure–function correlations. We have prepared well‐defined unnat...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2019-09, Vol.131 (37), p.13261-13266
Main Authors: Yu, Yang, Tyrikos‐Ergas, Theodore, Zhu, Yuntao, Fittolani, Giulio, Bordoni, Vittorio, Singhal, Ankush, Fair, Richard J., Grafmüller, Andrea, Seeberger, Peter H., Delbianco, Martina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A dense hydrogen‐bond network is responsible for the mechanical and structural properties of polysaccharides. Random derivatization alters the properties of the bulk material by disrupting the hydrogen bonds, but obstructs detailed structure–function correlations. We have prepared well‐defined unnatural oligosaccharides including methylated, deoxygenated, deoxyfluorinated, as well as carboxymethylated cellulose and chitin analogues with full control over the degree and pattern of substitution. Molecular dynamics simulations and crystallographic analysis show how distinct hydrogen‐bond modifications drastically affect the solubility, aggregation behavior, and crystallinity of carbohydrate materials. This systematic approach to establishing detailed structure–property correlations will guide the synthesis of novel, tailor‐made carbohydrate materials. Wasserstoffbrückenschere: Maßgeschneiderte Cellulose‐Oligosaccharidanaloga, einschließlich methylierter, deoxygenierter, deoxyfluorierter und carboxymethylierter Cellulose, wurden durch sequentielle Addition monomerer Bausteine mittels automatisierter Glycan‐Assemblierung hergestellt. Sieben verschiedene Bausteine mit Modifikationen, die spezifische Wasserstoffbrücken stören, ermöglichen es, Form und Eigenschaften der Materialien zu verändern.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201906577