Loading…
Timing-Dependent Priming Effects of Anodal tDCS on Two-Hand Coordination
The aim of study was to investigate the interaction of time of applying anodal transcranial direct current stimulation (tDCS) with motor learning using a two-hand coordination (THC) task. Sixty-four healthy participants were tested under four stimulation conditions: anodal tDCS a head of the motor t...
Saved in:
Published in: | Journal of psychophysiology 2020-10, Vol.34 (4), p.224-234 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of study was to investigate the interaction of time of applying anodal transcranial direct current stimulation (tDCS) with motor learning using a two-hand coordination (THC) task. Sixty-four healthy participants were tested under four stimulation conditions: anodal tDCS a head of the motor task, anodal tDCS during the motor task, anodal tDCS following the motor task, and sham tDCS. Transcranial direct current stimulation (tDCS) stimulation was applied on cerebellum by using a weak direct current (15 min) of 1.5 mA generated by a battery and regulated by the drive stimulator. The results show that on-line learning increased in the anodal tDCS-during group (p = .039). The anodal tDCS-after group relied more on off-line learning (p = .05). The during-tDCS and after-tDCS groups achieved greater improvements in speed/accuracy than the before-tDCS and sham-tDCS groups. The cerebellar tDCS may play a significant role to speed up motor skill acquisition and improve motor skill accuracy. |
---|---|
ISSN: | 0269-8803 2151-2124 |
DOI: | 10.1027/0269-8803/a000250 |