Loading…
Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management
Southern Africa is particularly sensitive to climate change, due to both ecological and socio-economic factors, with rural land users among the most vulnerable groups. The provision of information to support climate-relevant decision-making requires an understanding of the projected impacts of chang...
Saved in:
Published in: | Climatic change 2019-09, Vol.156 (1-2), p.139-150 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Southern Africa is particularly sensitive to climate change, due to both ecological and socio-economic factors, with rural land users among the most vulnerable groups. The provision of information to support climate-relevant decision-making requires an understanding of the projected impacts of change and complex feedbacks within the local ecosystems, as well as local demands on ecosystem services. In this paper, we address the limitation of current approaches for developing management relevant socio-ecological information on the projected impacts of climate change and human activities. We emphasise the need for linking disciplines and approaches by expounding the methodology followed in our two consecutive projects. These projects combine disciplines and levels of measurements from the leaf level (ecophysiology) to the local landscape level (flux measurements) and from the local household level (socio-economic surveys) to the regional level (remote sensing), feeding into a variety of models at multiple scales. Interdisciplinary, multi-scaled, and integrated socio-ecological approaches, as proposed here, are needed to compliment reductionist and linear, scale-specific approaches. Decision support systems are used to integrate and communicate the data and models to the local decision-makers. |
---|---|
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-019-02544-0 |