Loading…
Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data
Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance an...
Saved in:
Published in: | The American statistician 2001-05, Vol.55 (2), p.125-130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213 |
container_end_page | 130 |
container_issue | 2 |
container_start_page | 125 |
container_title | The American statistician |
container_volume | 55 |
creator | Wu, Chi-tsung Gumpertz, Marcia L Boos, Dennis D |
description | Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course. |
doi_str_mv | 10.1198/000313001750358608 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_228500294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2685999</jstor_id><sourcerecordid>2685999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBRCDBWsD_hMn9sCA2lAqtUUgurBETmKjVGnc2q5Qvz2uUrogMd2d3u_e2Q-Aa4zuMRb8ASFEMUUIpwxRxhPET0APM5pGJKX4FPT2QBQIdg4unFuGEaUJ6YHPoVmtpa2daaHRcJxlAzibzN8W-zodQNlW8D2bTWHmfL2Svm6_YLbZhsa0Dmpj4dzYlWyaHRzVztu62HpVwZH08hKcadk4dXWofbB4zj6GL9H0dTwZPk2jkqbMR5VQJZNEEMlJwlJdaYW5pHFFhaaI8kKWuCh4maikSFSsKqLiiitCNS21Ipj2wW3nu7Zms1XO50uztW04mRPCGUJExAEiHVRa45xVOl_b8B-7yzHK9xHmfyMMS3cHZ-lK2Wgr27J2x03BU4ZpoG46aum8sUeVJJwJIYL82Ml1q_dRfRvbVLmXu8bYX0f6zyN-AE0iisY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228500294</pqid></control><display><type>article</type><title>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Wu, Chi-tsung ; Gumpertz, Marcia L ; Boos, Dennis D</creator><creatorcontrib>Wu, Chi-tsung ; Gumpertz, Marcia L ; Boos, Dennis D</creatorcontrib><description>Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1198/000313001750358608</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Analytical estimating ; Biometrics ; Correlated data ; Covariance ; Covariance matrices ; Data analysis ; Estimated generalized least squares ; Estimation methods ; Estimators for the mean ; Exact sciences and technology ; Generalized estimating equations ; Generalized linear models ; Linear inference, regression ; Linear models ; Marginal model ; Mathematical models ; Mathematics ; Maximum likelihood estimation ; Multivariate analysis ; Parameter estimation ; Parametric models ; Probability and statistics ; Sciences and techniques of general use ; Statistical analysis ; Statistical variance ; Statistics ; Unbiased estimators ; Variance-covariance parameter estimation</subject><ispartof>The American statistician, 2001-05, Vol.55 (2), p.125-130</ispartof><rights>American Statistical Association 2001</rights><rights>Copyright 2001 American Statistical Association</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Statistical Association May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</citedby><cites>FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/228500294/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/228500294?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21394,27924,27925,33611,36060,43733,44363,58238,58471,74221,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=987513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chi-tsung</creatorcontrib><creatorcontrib>Gumpertz, Marcia L</creatorcontrib><creatorcontrib>Boos, Dennis D</creatorcontrib><title>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</title><title>The American statistician</title><description>Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.</description><subject>Analytical estimating</subject><subject>Biometrics</subject><subject>Correlated data</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Data analysis</subject><subject>Estimated generalized least squares</subject><subject>Estimation methods</subject><subject>Estimators for the mean</subject><subject>Exact sciences and technology</subject><subject>Generalized estimating equations</subject><subject>Generalized linear models</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Marginal model</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Unbiased estimators</subject><subject>Variance-covariance parameter estimation</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBRCDBWsD_hMn9sCA2lAqtUUgurBETmKjVGnc2q5Qvz2uUrogMd2d3u_e2Q-Aa4zuMRb8ASFEMUUIpwxRxhPET0APM5pGJKX4FPT2QBQIdg4unFuGEaUJ6YHPoVmtpa2daaHRcJxlAzibzN8W-zodQNlW8D2bTWHmfL2Svm6_YLbZhsa0Dmpj4dzYlWyaHRzVztu62HpVwZH08hKcadk4dXWofbB4zj6GL9H0dTwZPk2jkqbMR5VQJZNEEMlJwlJdaYW5pHFFhaaI8kKWuCh4maikSFSsKqLiiitCNS21Ipj2wW3nu7Zms1XO50uztW04mRPCGUJExAEiHVRa45xVOl_b8B-7yzHK9xHmfyMMS3cHZ-lK2Wgr27J2x03BU4ZpoG46aum8sUeVJJwJIYL82Ml1q_dRfRvbVLmXu8bYX0f6zyN-AE0iisY</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Wu, Chi-tsung</creator><creator>Gumpertz, Marcia L</creator><creator>Boos, Dennis D</creator><general>Taylor & Francis</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88F</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0T</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20010501</creationdate><title>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</title><author>Wu, Chi-tsung ; Gumpertz, Marcia L ; Boos, Dennis D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical estimating</topic><topic>Biometrics</topic><topic>Correlated data</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Data analysis</topic><topic>Estimated generalized least squares</topic><topic>Estimation methods</topic><topic>Estimators for the mean</topic><topic>Exact sciences and technology</topic><topic>Generalized estimating equations</topic><topic>Generalized linear models</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Marginal model</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Unbiased estimators</topic><topic>Variance-covariance parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chi-tsung</creatorcontrib><creatorcontrib>Gumpertz, Marcia L</creatorcontrib><creatorcontrib>Boos, Dennis D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chi-tsung</au><au>Gumpertz, Marcia L</au><au>Boos, Dennis D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</atitle><jtitle>The American statistician</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>55</volume><issue>2</issue><spage>125</spage><epage>130</epage><pages>125-130</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/000313001750358608</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-1305 |
ispartof | The American statistician, 2001-05, Vol.55 (2), p.125-130 |
issn | 0003-1305 1537-2731 |
language | eng |
recordid | cdi_proquest_journals_228500294 |
source | JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; ABI/INFORM Global; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Analytical estimating Biometrics Correlated data Covariance Covariance matrices Data analysis Estimated generalized least squares Estimation methods Estimators for the mean Exact sciences and technology Generalized estimating equations Generalized linear models Linear inference, regression Linear models Marginal model Mathematical models Mathematics Maximum likelihood estimation Multivariate analysis Parameter estimation Parametric models Probability and statistics Sciences and techniques of general use Statistical analysis Statistical variance Statistics Unbiased estimators Variance-covariance parameter estimation |
title | Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20GEE,%20MINQUE,%20ML,%20and%20REML%20Estimating%20Equations%20for%20Normally%20Distributed%20Data&rft.jtitle=The%20American%20statistician&rft.au=Wu,%20Chi-tsung&rft.date=2001-05-01&rft.volume=55&rft.issue=2&rft.spage=125&rft.epage=130&rft.pages=125-130&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1198/000313001750358608&rft_dat=%3Cjstor_proqu%3E2685999%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=228500294&rft_id=info:pmid/&rft_jstor_id=2685999&rfr_iscdi=true |