Loading…

Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data

Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance an...

Full description

Saved in:
Bibliographic Details
Published in:The American statistician 2001-05, Vol.55 (2), p.125-130
Main Authors: Wu, Chi-tsung, Gumpertz, Marcia L, Boos, Dennis D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213
cites cdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213
container_end_page 130
container_issue 2
container_start_page 125
container_title The American statistician
container_volume 55
creator Wu, Chi-tsung
Gumpertz, Marcia L
Boos, Dennis D
description Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.
doi_str_mv 10.1198/000313001750358608
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_228500294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2685999</jstor_id><sourcerecordid>2685999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBRCDBWsD_hMn9sCA2lAqtUUgurBETmKjVGnc2q5Qvz2uUrogMd2d3u_e2Q-Aa4zuMRb8ASFEMUUIpwxRxhPET0APM5pGJKX4FPT2QBQIdg4unFuGEaUJ6YHPoVmtpa2daaHRcJxlAzibzN8W-zodQNlW8D2bTWHmfL2Svm6_YLbZhsa0Dmpj4dzYlWyaHRzVztu62HpVwZH08hKcadk4dXWofbB4zj6GL9H0dTwZPk2jkqbMR5VQJZNEEMlJwlJdaYW5pHFFhaaI8kKWuCh4maikSFSsKqLiiitCNS21Ipj2wW3nu7Zms1XO50uztW04mRPCGUJExAEiHVRa45xVOl_b8B-7yzHK9xHmfyMMS3cHZ-lK2Wgr27J2x03BU4ZpoG46aum8sUeVJJwJIYL82Ml1q_dRfRvbVLmXu8bYX0f6zyN-AE0iisY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228500294</pqid></control><display><type>article</type><title>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Wu, Chi-tsung ; Gumpertz, Marcia L ; Boos, Dennis D</creator><creatorcontrib>Wu, Chi-tsung ; Gumpertz, Marcia L ; Boos, Dennis D</creatorcontrib><description>Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1198/000313001750358608</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Analytical estimating ; Biometrics ; Correlated data ; Covariance ; Covariance matrices ; Data analysis ; Estimated generalized least squares ; Estimation methods ; Estimators for the mean ; Exact sciences and technology ; Generalized estimating equations ; Generalized linear models ; Linear inference, regression ; Linear models ; Marginal model ; Mathematical models ; Mathematics ; Maximum likelihood estimation ; Multivariate analysis ; Parameter estimation ; Parametric models ; Probability and statistics ; Sciences and techniques of general use ; Statistical analysis ; Statistical variance ; Statistics ; Unbiased estimators ; Variance-covariance parameter estimation</subject><ispartof>The American statistician, 2001-05, Vol.55 (2), p.125-130</ispartof><rights>American Statistical Association 2001</rights><rights>Copyright 2001 American Statistical Association</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Statistical Association May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</citedby><cites>FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/228500294/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/228500294?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21394,27924,27925,33611,36060,43733,44363,58238,58471,74221,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=987513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chi-tsung</creatorcontrib><creatorcontrib>Gumpertz, Marcia L</creatorcontrib><creatorcontrib>Boos, Dennis D</creatorcontrib><title>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</title><title>The American statistician</title><description>Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.</description><subject>Analytical estimating</subject><subject>Biometrics</subject><subject>Correlated data</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Data analysis</subject><subject>Estimated generalized least squares</subject><subject>Estimation methods</subject><subject>Estimators for the mean</subject><subject>Exact sciences and technology</subject><subject>Generalized estimating equations</subject><subject>Generalized linear models</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Marginal model</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Unbiased estimators</subject><subject>Variance-covariance parameter estimation</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBRCDBWsD_hMn9sCA2lAqtUUgurBETmKjVGnc2q5Qvz2uUrogMd2d3u_e2Q-Aa4zuMRb8ASFEMUUIpwxRxhPET0APM5pGJKX4FPT2QBQIdg4unFuGEaUJ6YHPoVmtpa2daaHRcJxlAzibzN8W-zodQNlW8D2bTWHmfL2Svm6_YLbZhsa0Dmpj4dzYlWyaHRzVztu62HpVwZH08hKcadk4dXWofbB4zj6GL9H0dTwZPk2jkqbMR5VQJZNEEMlJwlJdaYW5pHFFhaaI8kKWuCh4maikSFSsKqLiiitCNS21Ipj2wW3nu7Zms1XO50uztW04mRPCGUJExAEiHVRa45xVOl_b8B-7yzHK9xHmfyMMS3cHZ-lK2Wgr27J2x03BU4ZpoG46aum8sUeVJJwJIYL82Ml1q_dRfRvbVLmXu8bYX0f6zyN-AE0iisY</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Wu, Chi-tsung</creator><creator>Gumpertz, Marcia L</creator><creator>Boos, Dennis D</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88F</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0T</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20010501</creationdate><title>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</title><author>Wu, Chi-tsung ; Gumpertz, Marcia L ; Boos, Dennis D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical estimating</topic><topic>Biometrics</topic><topic>Correlated data</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Data analysis</topic><topic>Estimated generalized least squares</topic><topic>Estimation methods</topic><topic>Estimators for the mean</topic><topic>Exact sciences and technology</topic><topic>Generalized estimating equations</topic><topic>Generalized linear models</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Marginal model</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Unbiased estimators</topic><topic>Variance-covariance parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chi-tsung</creatorcontrib><creatorcontrib>Gumpertz, Marcia L</creatorcontrib><creatorcontrib>Boos, Dennis D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chi-tsung</au><au>Gumpertz, Marcia L</au><au>Boos, Dennis D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data</atitle><jtitle>The American statistician</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>55</volume><issue>2</issue><spage>125</spage><epage>130</epage><pages>125-130</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/000313001750358608</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2001-05, Vol.55 (2), p.125-130
issn 0003-1305
1537-2731
language eng
recordid cdi_proquest_journals_228500294
source JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; ABI/INFORM Global; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Analytical estimating
Biometrics
Correlated data
Covariance
Covariance matrices
Data analysis
Estimated generalized least squares
Estimation methods
Estimators for the mean
Exact sciences and technology
Generalized estimating equations
Generalized linear models
Linear inference, regression
Linear models
Marginal model
Mathematical models
Mathematics
Maximum likelihood estimation
Multivariate analysis
Parameter estimation
Parametric models
Probability and statistics
Sciences and techniques of general use
Statistical analysis
Statistical variance
Statistics
Unbiased estimators
Variance-covariance parameter estimation
title Comparison of GEE, MINQUE, ML, and REML Estimating Equations for Normally Distributed Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20GEE,%20MINQUE,%20ML,%20and%20REML%20Estimating%20Equations%20for%20Normally%20Distributed%20Data&rft.jtitle=The%20American%20statistician&rft.au=Wu,%20Chi-tsung&rft.date=2001-05-01&rft.volume=55&rft.issue=2&rft.spage=125&rft.epage=130&rft.pages=125-130&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1198/000313001750358608&rft_dat=%3Cjstor_proqu%3E2685999%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-d9ec5a292a82657fdfe18a34d39f3038bac1bb8c6e6b6e4ed2e4d8e23f3cfe213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=228500294&rft_id=info:pmid/&rft_jstor_id=2685999&rfr_iscdi=true