Loading…
Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control
In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a con...
Saved in:
Published in: | The International journal of robotics research 2019-09, Vol.38 (10-11), p.1307-1323 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333 |
container_end_page | 1323 |
container_issue | 10-11 |
container_start_page | 1307 |
container_title | The International journal of robotics research |
container_volume | 38 |
creator | Fevre, Martin Goodwine, Bill Schmiedeler, James P |
description | In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller. |
doi_str_mv | 10.1177/0278364919870242 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2285046725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364919870242</sage_id><sourcerecordid>2285046725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB97lwHX0dxkZjJdSvEFBTd1Pd5m7tTUaTImM5X-e6dUEARXd3G-71w4jF2BvAEw5lYqU-oim8K0NFJl6ohNwGQgNJjimE32sdjnp-wspbWUUhdyOmFvC4oRnRfL1vmaf2H74fyKh4Z3LXqMfPA1RbT9gD3VfOk6qhPfOuRbaoN1_Y7XZMOmC8n1LnhB_h29HVEbfB9De8FOGmwTXf7cc_b6cL-YPYn5y-Pz7G4ubAamFyWCbhAL21BtaWmN0trkBrQitFRKleekjcobBZABSMpQZ7lZgh2jRmt9zq4PvV0MnwOlvlqHIfrxZaVUmcusGO2RkgfKxpBSpKbqottg3FUgq_2O1d8dR0UclIQr-i39l_8G_ndzIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285046725</pqid></control><display><type>article</type><title>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</title><source>SAGE</source><creator>Fevre, Martin ; Goodwine, Bill ; Schmiedeler, James P</creator><creatorcontrib>Fevre, Martin ; Goodwine, Bill ; Schmiedeler, James P</creatorcontrib><description>In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364919870242</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control systems ; Controllers ; Decomposition ; Feedback control ; Linearization ; Robot control ; Terrain ; Velocity ; Visual perception ; Walking</subject><ispartof>The International journal of robotics research, 2019-09, Vol.38 (10-11), p.1307-1323</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</citedby><cites>FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</cites><orcidid>0000-0002-4238-5450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,79134</link.rule.ids></links><search><creatorcontrib>Fevre, Martin</creatorcontrib><creatorcontrib>Goodwine, Bill</creatorcontrib><creatorcontrib>Schmiedeler, James P</creatorcontrib><title>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</title><title>The International journal of robotics research</title><description>In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.</description><subject>Control systems</subject><subject>Controllers</subject><subject>Decomposition</subject><subject>Feedback control</subject><subject>Linearization</subject><subject>Robot control</subject><subject>Terrain</subject><subject>Velocity</subject><subject>Visual perception</subject><subject>Walking</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB97lwHX0dxkZjJdSvEFBTd1Pd5m7tTUaTImM5X-e6dUEARXd3G-71w4jF2BvAEw5lYqU-oim8K0NFJl6ohNwGQgNJjimE32sdjnp-wspbWUUhdyOmFvC4oRnRfL1vmaf2H74fyKh4Z3LXqMfPA1RbT9gD3VfOk6qhPfOuRbaoN1_Y7XZMOmC8n1LnhB_h29HVEbfB9De8FOGmwTXf7cc_b6cL-YPYn5y-Pz7G4ubAamFyWCbhAL21BtaWmN0trkBrQitFRKleekjcobBZABSMpQZ7lZgh2jRmt9zq4PvV0MnwOlvlqHIfrxZaVUmcusGO2RkgfKxpBSpKbqottg3FUgq_2O1d8dR0UclIQr-i39l_8G_ndzIw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Fevre, Martin</creator><creator>Goodwine, Bill</creator><creator>Schmiedeler, James P</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4238-5450</orcidid></search><sort><creationdate>20190901</creationdate><title>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</title><author>Fevre, Martin ; Goodwine, Bill ; Schmiedeler, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Control systems</topic><topic>Controllers</topic><topic>Decomposition</topic><topic>Feedback control</topic><topic>Linearization</topic><topic>Robot control</topic><topic>Terrain</topic><topic>Velocity</topic><topic>Visual perception</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fevre, Martin</creatorcontrib><creatorcontrib>Goodwine, Bill</creatorcontrib><creatorcontrib>Schmiedeler, James P</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fevre, Martin</au><au>Goodwine, Bill</au><au>Schmiedeler, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</atitle><jtitle>The International journal of robotics research</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>38</volume><issue>10-11</issue><spage>1307</spage><epage>1323</epage><pages>1307-1323</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364919870242</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4238-5450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2019-09, Vol.38 (10-11), p.1307-1323 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2285046725 |
source | SAGE |
subjects | Control systems Controllers Decomposition Feedback control Linearization Robot control Terrain Velocity Visual perception Walking |
title | Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terrain-blind%20walking%20of%20planar%20underactuated%20bipeds%20via%20velocity%20decomposition-enhanced%20control&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Fevre,%20Martin&rft.date=2019-09-01&rft.volume=38&rft.issue=10-11&rft.spage=1307&rft.epage=1323&rft.pages=1307-1323&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364919870242&rft_dat=%3Cproquest_cross%3E2285046725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285046725&rft_id=info:pmid/&rft_sage_id=10.1177_0278364919870242&rfr_iscdi=true |