Loading…

Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control

In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a con...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of robotics research 2019-09, Vol.38 (10-11), p.1307-1323
Main Authors: Fevre, Martin, Goodwine, Bill, Schmiedeler, James P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333
cites cdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333
container_end_page 1323
container_issue 10-11
container_start_page 1307
container_title The International journal of robotics research
container_volume 38
creator Fevre, Martin
Goodwine, Bill
Schmiedeler, James P
description In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.
doi_str_mv 10.1177/0278364919870242
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2285046725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364919870242</sage_id><sourcerecordid>2285046725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB97lwHX0dxkZjJdSvEFBTd1Pd5m7tTUaTImM5X-e6dUEARXd3G-71w4jF2BvAEw5lYqU-oim8K0NFJl6ohNwGQgNJjimE32sdjnp-wspbWUUhdyOmFvC4oRnRfL1vmaf2H74fyKh4Z3LXqMfPA1RbT9gD3VfOk6qhPfOuRbaoN1_Y7XZMOmC8n1LnhB_h29HVEbfB9De8FOGmwTXf7cc_b6cL-YPYn5y-Pz7G4ubAamFyWCbhAL21BtaWmN0trkBrQitFRKleekjcobBZABSMpQZ7lZgh2jRmt9zq4PvV0MnwOlvlqHIfrxZaVUmcusGO2RkgfKxpBSpKbqottg3FUgq_2O1d8dR0UclIQr-i39l_8G_ndzIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285046725</pqid></control><display><type>article</type><title>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</title><source>SAGE</source><creator>Fevre, Martin ; Goodwine, Bill ; Schmiedeler, James P</creator><creatorcontrib>Fevre, Martin ; Goodwine, Bill ; Schmiedeler, James P</creatorcontrib><description>In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364919870242</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control systems ; Controllers ; Decomposition ; Feedback control ; Linearization ; Robot control ; Terrain ; Velocity ; Visual perception ; Walking</subject><ispartof>The International journal of robotics research, 2019-09, Vol.38 (10-11), p.1307-1323</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</citedby><cites>FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</cites><orcidid>0000-0002-4238-5450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,79134</link.rule.ids></links><search><creatorcontrib>Fevre, Martin</creatorcontrib><creatorcontrib>Goodwine, Bill</creatorcontrib><creatorcontrib>Schmiedeler, James P</creatorcontrib><title>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</title><title>The International journal of robotics research</title><description>In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.</description><subject>Control systems</subject><subject>Controllers</subject><subject>Decomposition</subject><subject>Feedback control</subject><subject>Linearization</subject><subject>Robot control</subject><subject>Terrain</subject><subject>Velocity</subject><subject>Visual perception</subject><subject>Walking</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB97lwHX0dxkZjJdSvEFBTd1Pd5m7tTUaTImM5X-e6dUEARXd3G-71w4jF2BvAEw5lYqU-oim8K0NFJl6ohNwGQgNJjimE32sdjnp-wspbWUUhdyOmFvC4oRnRfL1vmaf2H74fyKh4Z3LXqMfPA1RbT9gD3VfOk6qhPfOuRbaoN1_Y7XZMOmC8n1LnhB_h29HVEbfB9De8FOGmwTXf7cc_b6cL-YPYn5y-Pz7G4ubAamFyWCbhAL21BtaWmN0trkBrQitFRKleekjcobBZABSMpQZ7lZgh2jRmt9zq4PvV0MnwOlvlqHIfrxZaVUmcusGO2RkgfKxpBSpKbqottg3FUgq_2O1d8dR0UclIQr-i39l_8G_ndzIw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Fevre, Martin</creator><creator>Goodwine, Bill</creator><creator>Schmiedeler, James P</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4238-5450</orcidid></search><sort><creationdate>20190901</creationdate><title>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</title><author>Fevre, Martin ; Goodwine, Bill ; Schmiedeler, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Control systems</topic><topic>Controllers</topic><topic>Decomposition</topic><topic>Feedback control</topic><topic>Linearization</topic><topic>Robot control</topic><topic>Terrain</topic><topic>Velocity</topic><topic>Visual perception</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fevre, Martin</creatorcontrib><creatorcontrib>Goodwine, Bill</creatorcontrib><creatorcontrib>Schmiedeler, James P</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fevre, Martin</au><au>Goodwine, Bill</au><au>Schmiedeler, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control</atitle><jtitle>The International journal of robotics research</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>38</volume><issue>10-11</issue><spage>1307</spage><epage>1323</epage><pages>1307-1323</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>In this article, we develop and assess a novel approach for the control of underactuated planar bipeds that is based on velocity decomposition. The new controller employs heuristic rules that mimic the functionality of transverse linearization feedback control and that can be layered on top of a conventional hybrid zero dynamics (HZD)-based controller. The heuristics sought to retain HZD-based control’s simplicity and enhance disturbance rejection for practical implementation on realistic biped robots. The proposed control strategy implements a feedback on the time rate of change of the decomposed uncontrolled velocity and is compared with conventional HZD-based control and transverse linearization feedback control for both vanishing and non-vanishing disturbances. Simulation studies with a point-foot, three-link biped show that the proposed method has nearly identical performance to transverse linearization feedback control and outperforms conventional HZD-based control. For the non-vanishing case, the velocity decomposition-enhanced controller outperforms HZD-based control, but takes fewer steps on average before failure than transverse linearization feedback control when walking on uneven terrain without visual perception of the ground. The findings were validated experimentally on a planar, five-link biped robot for eight different uneven terrains. The velocity decomposition-enhanced controller outperformed HZD-based control while maintaining a relatively low specific energetic cost of transport (~0.45). The biped robot “blindly” traversed uneven terrains with changes in terrain height accumulating to 5% of its leg length using the stand-alone low-level controller.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364919870242</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4238-5450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2019-09, Vol.38 (10-11), p.1307-1323
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_2285046725
source SAGE
subjects Control systems
Controllers
Decomposition
Feedback control
Linearization
Robot control
Terrain
Velocity
Visual perception
Walking
title Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terrain-blind%20walking%20of%20planar%20underactuated%20bipeds%20via%20velocity%20decomposition-enhanced%20control&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Fevre,%20Martin&rft.date=2019-09-01&rft.volume=38&rft.issue=10-11&rft.spage=1307&rft.epage=1323&rft.pages=1307-1323&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364919870242&rft_dat=%3Cproquest_cross%3E2285046725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-8a13faa6cfedcebc7233757132eace80255e3725f2114110e4a3457b1c025f333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285046725&rft_id=info:pmid/&rft_sage_id=10.1177_0278364919870242&rfr_iscdi=true