Loading…
Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland
Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite mea...
Saved in:
Published in: | Environmental science & technology 2019-09, Vol.53 (17), p.10279-10287 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10287 |
container_issue | 17 |
container_start_page | 10279 |
container_title | Environmental science & technology |
container_volume | 53 |
creator | de Hoogh, Kees Saucy, Apolline Shtein, Alexandra Schwartz, Joel West, Erin A Strassmann, Alexandra Puhan, Milo Röösli, Martin Stafoggia, Massimo Kloog, Itai |
description | Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland. |
doi_str_mv | 10.1021/acs.est.9b03107 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_journals_2285070595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285070595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-72ebbe42a5f5e5ad73b4da33cc632d1e905c753037a5ed6ba38a989aaff1a25d3</originalsourceid><addsrcrecordid>eNpFkMFKw0AQQBdRsFbPXhc8SursbifJHku1WqhWqIK3MNndSEpI6maL6Ml_8A_9EhNb8DQwvDcDj7FzASMBUlyRaUeuDSOdgxKQHLCBQAkRpigO2QBAqEir-OWYnbTtGgCkgnTAzKN3tjShrF_5rKxdtDJUOX5NZfXBH5aSF43nEgB_vr4liJjPa9P4TePpT1nez_mKgquqMvRWID4xvmlbvnovw6fzFdX2lB0VVLXubD-H7Hl28zS9ixbL2_l0sohIpjpEiXR57saSsECHZBOVjy0pZUyspBVOA5oEFaiE0Nk4J5WSTjVRUQiSaNWQXezubnzztu1aZOtm6-vuZSZlipAAauyoyx3VBfsHBGR9xaxf9ua-ovoFEoJmXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285070595</pqid></control><display><type>article</type><title>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>de Hoogh, Kees ; Saucy, Apolline ; Shtein, Alexandra ; Schwartz, Joel ; West, Erin A ; Strassmann, Alexandra ; Puhan, Milo ; Röösli, Martin ; Stafoggia, Massimo ; Kloog, Itai</creator><creatorcontrib>de Hoogh, Kees ; Saucy, Apolline ; Shtein, Alexandra ; Schwartz, Joel ; West, Erin A ; Strassmann, Alexandra ; Puhan, Milo ; Röösli, Martin ; Stafoggia, Massimo ; Kloog, Itai</creatorcontrib><description>Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b03107</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Atmospheric models ; Atmospheric monitoring ; Forests ; Land use ; Monitoring ; Nitrogen dioxide ; Particulate emissions ; Particulate matter ; Pollutants ; Pollution monitoring ; Satellites ; Variation</subject><ispartof>Environmental science & technology, 2019-09, Vol.53 (17), p.10279-10287</ispartof><rights>Copyright American Chemical Society Sep 3, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5974-2007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Hoogh, Kees</creatorcontrib><creatorcontrib>Saucy, Apolline</creatorcontrib><creatorcontrib>Shtein, Alexandra</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><creatorcontrib>West, Erin A</creatorcontrib><creatorcontrib>Strassmann, Alexandra</creatorcontrib><creatorcontrib>Puhan, Milo</creatorcontrib><creatorcontrib>Röösli, Martin</creatorcontrib><creatorcontrib>Stafoggia, Massimo</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><title>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.</description><subject>Atmospheric models</subject><subject>Atmospheric monitoring</subject><subject>Forests</subject><subject>Land use</subject><subject>Monitoring</subject><subject>Nitrogen dioxide</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Pollutants</subject><subject>Pollution monitoring</subject><subject>Satellites</subject><subject>Variation</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKw0AQQBdRsFbPXhc8SursbifJHku1WqhWqIK3MNndSEpI6maL6Ml_8A_9EhNb8DQwvDcDj7FzASMBUlyRaUeuDSOdgxKQHLCBQAkRpigO2QBAqEir-OWYnbTtGgCkgnTAzKN3tjShrF_5rKxdtDJUOX5NZfXBH5aSF43nEgB_vr4liJjPa9P4TePpT1nez_mKgquqMvRWID4xvmlbvnovw6fzFdX2lB0VVLXubD-H7Hl28zS9ixbL2_l0sohIpjpEiXR57saSsECHZBOVjy0pZUyspBVOA5oEFaiE0Nk4J5WSTjVRUQiSaNWQXezubnzztu1aZOtm6-vuZSZlipAAauyoyx3VBfsHBGR9xaxf9ua-ovoFEoJmXw</recordid><startdate>20190903</startdate><enddate>20190903</enddate><creator>de Hoogh, Kees</creator><creator>Saucy, Apolline</creator><creator>Shtein, Alexandra</creator><creator>Schwartz, Joel</creator><creator>West, Erin A</creator><creator>Strassmann, Alexandra</creator><creator>Puhan, Milo</creator><creator>Röösli, Martin</creator><creator>Stafoggia, Massimo</creator><creator>Kloog, Itai</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5974-2007</orcidid></search><sort><creationdate>20190903</creationdate><title>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</title><author>de Hoogh, Kees ; Saucy, Apolline ; Shtein, Alexandra ; Schwartz, Joel ; West, Erin A ; Strassmann, Alexandra ; Puhan, Milo ; Röösli, Martin ; Stafoggia, Massimo ; Kloog, Itai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-72ebbe42a5f5e5ad73b4da33cc632d1e905c753037a5ed6ba38a989aaff1a25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>Atmospheric monitoring</topic><topic>Forests</topic><topic>Land use</topic><topic>Monitoring</topic><topic>Nitrogen dioxide</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Pollutants</topic><topic>Pollution monitoring</topic><topic>Satellites</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Hoogh, Kees</creatorcontrib><creatorcontrib>Saucy, Apolline</creatorcontrib><creatorcontrib>Shtein, Alexandra</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><creatorcontrib>West, Erin A</creatorcontrib><creatorcontrib>Strassmann, Alexandra</creatorcontrib><creatorcontrib>Puhan, Milo</creatorcontrib><creatorcontrib>Röösli, Martin</creatorcontrib><creatorcontrib>Stafoggia, Massimo</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Hoogh, Kees</au><au>Saucy, Apolline</au><au>Shtein, Alexandra</au><au>Schwartz, Joel</au><au>West, Erin A</au><au>Strassmann, Alexandra</au><au>Puhan, Milo</au><au>Röösli, Martin</au><au>Stafoggia, Massimo</au><au>Kloog, Itai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-09-03</date><risdate>2019</risdate><volume>53</volume><issue>17</issue><spage>10279</spage><epage>10287</epage><pages>10279-10287</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.9b03107</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5974-2007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2019-09, Vol.53 (17), p.10279-10287 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2285070595 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Atmospheric models Atmospheric monitoring Forests Land use Monitoring Nitrogen dioxide Particulate emissions Particulate matter Pollutants Pollution monitoring Satellites Variation |
title | Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Fine-Scale%20Daily%20NO2%20for%202005%E2%80%932016%20Incorporating%20OMI%20Satellite%20Data%20Across%20Switzerland&rft.jtitle=Environmental%20science%20&%20technology&rft.au=de%20Hoogh,%20Kees&rft.date=2019-09-03&rft.volume=53&rft.issue=17&rft.spage=10279&rft.epage=10287&rft.pages=10279-10287&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b03107&rft_dat=%3Cproquest_acs_j%3E2285070595%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-72ebbe42a5f5e5ad73b4da33cc632d1e905c753037a5ed6ba38a989aaff1a25d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285070595&rft_id=info:pmid/&rfr_iscdi=true |