Loading…

Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland

Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite mea...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2019-09, Vol.53 (17), p.10279-10287
Main Authors: de Hoogh, Kees, Saucy, Apolline, Shtein, Alexandra, Schwartz, Joel, West, Erin A, Strassmann, Alexandra, Puhan, Milo, Röösli, Martin, Stafoggia, Massimo, Kloog, Itai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10287
container_issue 17
container_start_page 10279
container_title Environmental science & technology
container_volume 53
creator de Hoogh, Kees
Saucy, Apolline
Shtein, Alexandra
Schwartz, Joel
West, Erin A
Strassmann, Alexandra
Puhan, Milo
Röösli, Martin
Stafoggia, Massimo
Kloog, Itai
description Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.
doi_str_mv 10.1021/acs.est.9b03107
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_journals_2285070595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285070595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-72ebbe42a5f5e5ad73b4da33cc632d1e905c753037a5ed6ba38a989aaff1a25d3</originalsourceid><addsrcrecordid>eNpFkMFKw0AQQBdRsFbPXhc8SursbifJHku1WqhWqIK3MNndSEpI6maL6Ml_8A_9EhNb8DQwvDcDj7FzASMBUlyRaUeuDSOdgxKQHLCBQAkRpigO2QBAqEir-OWYnbTtGgCkgnTAzKN3tjShrF_5rKxdtDJUOX5NZfXBH5aSF43nEgB_vr4liJjPa9P4TePpT1nez_mKgquqMvRWID4xvmlbvnovw6fzFdX2lB0VVLXubD-H7Hl28zS9ixbL2_l0sohIpjpEiXR57saSsECHZBOVjy0pZUyspBVOA5oEFaiE0Nk4J5WSTjVRUQiSaNWQXezubnzztu1aZOtm6-vuZSZlipAAauyoyx3VBfsHBGR9xaxf9ua-ovoFEoJmXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285070595</pqid></control><display><type>article</type><title>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>de Hoogh, Kees ; Saucy, Apolline ; Shtein, Alexandra ; Schwartz, Joel ; West, Erin A ; Strassmann, Alexandra ; Puhan, Milo ; Röösli, Martin ; Stafoggia, Massimo ; Kloog, Itai</creator><creatorcontrib>de Hoogh, Kees ; Saucy, Apolline ; Shtein, Alexandra ; Schwartz, Joel ; West, Erin A ; Strassmann, Alexandra ; Puhan, Milo ; Röösli, Martin ; Stafoggia, Massimo ; Kloog, Itai</creatorcontrib><description>Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b03107</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Atmospheric models ; Atmospheric monitoring ; Forests ; Land use ; Monitoring ; Nitrogen dioxide ; Particulate emissions ; Particulate matter ; Pollutants ; Pollution monitoring ; Satellites ; Variation</subject><ispartof>Environmental science &amp; technology, 2019-09, Vol.53 (17), p.10279-10287</ispartof><rights>Copyright American Chemical Society Sep 3, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5974-2007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Hoogh, Kees</creatorcontrib><creatorcontrib>Saucy, Apolline</creatorcontrib><creatorcontrib>Shtein, Alexandra</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><creatorcontrib>West, Erin A</creatorcontrib><creatorcontrib>Strassmann, Alexandra</creatorcontrib><creatorcontrib>Puhan, Milo</creatorcontrib><creatorcontrib>Röösli, Martin</creatorcontrib><creatorcontrib>Stafoggia, Massimo</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><title>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.</description><subject>Atmospheric models</subject><subject>Atmospheric monitoring</subject><subject>Forests</subject><subject>Land use</subject><subject>Monitoring</subject><subject>Nitrogen dioxide</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Pollutants</subject><subject>Pollution monitoring</subject><subject>Satellites</subject><subject>Variation</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKw0AQQBdRsFbPXhc8SursbifJHku1WqhWqIK3MNndSEpI6maL6Ml_8A_9EhNb8DQwvDcDj7FzASMBUlyRaUeuDSOdgxKQHLCBQAkRpigO2QBAqEir-OWYnbTtGgCkgnTAzKN3tjShrF_5rKxdtDJUOX5NZfXBH5aSF43nEgB_vr4liJjPa9P4TePpT1nez_mKgquqMvRWID4xvmlbvnovw6fzFdX2lB0VVLXubD-H7Hl28zS9ixbL2_l0sohIpjpEiXR57saSsECHZBOVjy0pZUyspBVOA5oEFaiE0Nk4J5WSTjVRUQiSaNWQXezubnzztu1aZOtm6-vuZSZlipAAauyoyx3VBfsHBGR9xaxf9ua-ovoFEoJmXw</recordid><startdate>20190903</startdate><enddate>20190903</enddate><creator>de Hoogh, Kees</creator><creator>Saucy, Apolline</creator><creator>Shtein, Alexandra</creator><creator>Schwartz, Joel</creator><creator>West, Erin A</creator><creator>Strassmann, Alexandra</creator><creator>Puhan, Milo</creator><creator>Röösli, Martin</creator><creator>Stafoggia, Massimo</creator><creator>Kloog, Itai</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5974-2007</orcidid></search><sort><creationdate>20190903</creationdate><title>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</title><author>de Hoogh, Kees ; Saucy, Apolline ; Shtein, Alexandra ; Schwartz, Joel ; West, Erin A ; Strassmann, Alexandra ; Puhan, Milo ; Röösli, Martin ; Stafoggia, Massimo ; Kloog, Itai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-72ebbe42a5f5e5ad73b4da33cc632d1e905c753037a5ed6ba38a989aaff1a25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>Atmospheric monitoring</topic><topic>Forests</topic><topic>Land use</topic><topic>Monitoring</topic><topic>Nitrogen dioxide</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Pollutants</topic><topic>Pollution monitoring</topic><topic>Satellites</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Hoogh, Kees</creatorcontrib><creatorcontrib>Saucy, Apolline</creatorcontrib><creatorcontrib>Shtein, Alexandra</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><creatorcontrib>West, Erin A</creatorcontrib><creatorcontrib>Strassmann, Alexandra</creatorcontrib><creatorcontrib>Puhan, Milo</creatorcontrib><creatorcontrib>Röösli, Martin</creatorcontrib><creatorcontrib>Stafoggia, Massimo</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Hoogh, Kees</au><au>Saucy, Apolline</au><au>Shtein, Alexandra</au><au>Schwartz, Joel</au><au>West, Erin A</au><au>Strassmann, Alexandra</au><au>Puhan, Milo</au><au>Röösli, Martin</au><au>Stafoggia, Massimo</au><au>Kloog, Itai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-09-03</date><risdate>2019</risdate><volume>53</volume><issue>17</issue><spage>10279</spage><epage>10287</epage><pages>10279-10287</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Nitrogen dioxide (NO2) remains an important traffic-related pollutant associated with both short- and long-term health effects. We aim to model daily average NO2 concentrations in Switzerland in a multistage framework with mixed-effect and random forest models to respectively downscale satellite measurements and incorporate local sources. Spatial and temporal predictor variables include data from the Ozone Monitoring Instrument, Copernicus Atmosphere Monitoring Service, land use, and meteorological variables. We derived robust models explaining ∼58% (R 2 range, 0.56–0.64) of the variation in measured NO2 concentrations using mixed-effect models at a 1 × 1 km resolution. The random forest models explained ∼73% (R 2 range, 0.70–0.75) of the overall variation in the residuals at a 100 × 100 m resolution. This is one of the first studies showing the potential of using earth observation data to develop robust models with fine-scale spatial (100 × 100 m) and temporal (daily) variation of NO2 across Switzerland from 2005 to 2016. The novelty of this study is in demonstrating that methods originally developed for particulate matter can also successfully be applied to NO2. The predicted NO2 concentrations will be made available to facilitate health research in Switzerland.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.9b03107</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5974-2007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-09, Vol.53 (17), p.10279-10287
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2285070595
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Atmospheric models
Atmospheric monitoring
Forests
Land use
Monitoring
Nitrogen dioxide
Particulate emissions
Particulate matter
Pollutants
Pollution monitoring
Satellites
Variation
title Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Fine-Scale%20Daily%20NO2%20for%202005%E2%80%932016%20Incorporating%20OMI%20Satellite%20Data%20Across%20Switzerland&rft.jtitle=Environmental%20science%20&%20technology&rft.au=de%20Hoogh,%20Kees&rft.date=2019-09-03&rft.volume=53&rft.issue=17&rft.spage=10279&rft.epage=10287&rft.pages=10279-10287&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b03107&rft_dat=%3Cproquest_acs_j%3E2285070595%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-72ebbe42a5f5e5ad73b4da33cc632d1e905c753037a5ed6ba38a989aaff1a25d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285070595&rft_id=info:pmid/&rfr_iscdi=true