Loading…
Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo
This paper reports on the development of a piezo-actuated nanometric ultra-fast tool servo (NU-FTS) for nanocutting. For motion guidance, a flexure mechanism is especially designed using a novel kind of generalized flexure hinges with the notch profiles described by a rational Bezier curve. Both kin...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2020-01, Vol.67 (1), p.432-441 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3 |
container_end_page | 441 |
container_issue | 1 |
container_start_page | 432 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Zhu, Zhiwei Du, Hanheng Zhou, Rongjing Huang, Peng Zhu, Wu-Le Guo, Ping |
description | This paper reports on the development of a piezo-actuated nanometric ultra-fast tool servo (NU-FTS) for nanocutting. For motion guidance, a flexure mechanism is especially designed using a novel kind of generalized flexure hinges with the notch profiles described by a rational Bezier curve. Both kinematics and dynamics properties of the mechanism are comprehensively modeled through a novel finite beam modeling method. With this model, the hinge is divided into a set of serially connected beams with constant cross sections. The equivalent stiffness and lumped moving mass of the mechanism are derived based on the Euler-Bernoulli beam theory. Taking advantage of the structure and performance model, the notch shape as well as the dimensions are optimized to achieve the specified criteria for the NU-FTS. Performance of the designed mechanism is verified through both finite-element analysis and practical testing on a prototype. Overall, the NU-FTS is demonstrated to have a stroke of 6 and 1.2 \mu m for the quasi-static and 10 kHz driving condition, respectively. Through dynamics inversion-based trajectory preshaping, a maximum following error around 25 and 50 nm is obtained for tracking a simple harmonic and a complicated trajectory, respectively. |
doi_str_mv | 10.1109/TIE.2019.2896103 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2285335250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8635531</ieee_id><sourcerecordid>2285335250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dTcPCbJUvrQQtGF03XIpEmZ2k5qMhX6753S4uqexXfOhQ-hRyAjAKJfqvl0RAnoEVW6BMKu0ACEkIXWXF2jAaFSFYTw8hbd5bwhBLgAMUCTic_NusW2XeEq2Y13XUzHU3TfTbvGMWCLP2wbd75LjcPLbZdsMbO5w1WMW_zl02-8RzfBbrN_uNwhWs6m1fi9WHy-zcevi8IxprqipsIrTYgAK2VwsgZZi5WEAMpZECvLedBOac5rFiT3pdNcWseD1Yx65tkQPZ939yn-HHzuzCYeUtu_NJQqwZiggvQUOVMuxZyTD2afmp1NRwPEnFyZ3pU5uTIXV33l6VxpvPf_uCqZEAzYH_kuY-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285335250</pqid></control><display><type>article</type><title>Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhu, Zhiwei ; Du, Hanheng ; Zhou, Rongjing ; Huang, Peng ; Zhu, Wu-Le ; Guo, Ping</creator><creatorcontrib>Zhu, Zhiwei ; Du, Hanheng ; Zhou, Rongjing ; Huang, Peng ; Zhu, Wu-Le ; Guo, Ping</creatorcontrib><description>This paper reports on the development of a piezo-actuated nanometric ultra-fast tool servo (NU-FTS) for nanocutting. For motion guidance, a flexure mechanism is especially designed using a novel kind of generalized flexure hinges with the notch profiles described by a rational Bezier curve. Both kinematics and dynamics properties of the mechanism are comprehensively modeled through a novel finite beam modeling method. With this model, the hinge is divided into a set of serially connected beams with constant cross sections. The equivalent stiffness and lumped moving mass of the mechanism are derived based on the Euler-Bernoulli beam theory. Taking advantage of the structure and performance model, the notch shape as well as the dimensions are optimized to achieve the specified criteria for the NU-FTS. Performance of the designed mechanism is verified through both finite-element analysis and practical testing on a prototype. Overall, the NU-FTS is demonstrated to have a stroke of 6 and 1.2 <inline-formula><tex-math notation="LaTeX"> \mu </tex-math></inline-formula>m for the quasi-static and 10 kHz driving condition, respectively. Through dynamics inversion-based trajectory preshaping, a maximum following error around 25 and 50 nm is obtained for tracking a simple harmonic and a complicated trajectory, respectively.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2896103</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Beam theory (structures) ; Couplings ; Curves ; Driving conditions ; Euler-Bernoulli beams ; Fasteners ; Finite element method ; Flexing ; Kinematics ; Multiobjective optimization ; nanometric ultra-fast tool servo (NM-FTS) ; piezo-actuated flexure mechanism ; Servomotors ; Shape ; Stiffness ; Strain ; Tracking ; Trajectories ; trajectory preshaping</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-01, Vol.67 (1), p.432-441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3</citedby><cites>FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3</cites><orcidid>0000-0003-2956-6748 ; 0000-0001-5363-9797 ; 0000-0003-3495-688X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8635531$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Zhu, Zhiwei</creatorcontrib><creatorcontrib>Du, Hanheng</creatorcontrib><creatorcontrib>Zhou, Rongjing</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Zhu, Wu-Le</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><title>Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper reports on the development of a piezo-actuated nanometric ultra-fast tool servo (NU-FTS) for nanocutting. For motion guidance, a flexure mechanism is especially designed using a novel kind of generalized flexure hinges with the notch profiles described by a rational Bezier curve. Both kinematics and dynamics properties of the mechanism are comprehensively modeled through a novel finite beam modeling method. With this model, the hinge is divided into a set of serially connected beams with constant cross sections. The equivalent stiffness and lumped moving mass of the mechanism are derived based on the Euler-Bernoulli beam theory. Taking advantage of the structure and performance model, the notch shape as well as the dimensions are optimized to achieve the specified criteria for the NU-FTS. Performance of the designed mechanism is verified through both finite-element analysis and practical testing on a prototype. Overall, the NU-FTS is demonstrated to have a stroke of 6 and 1.2 <inline-formula><tex-math notation="LaTeX"> \mu </tex-math></inline-formula>m for the quasi-static and 10 kHz driving condition, respectively. Through dynamics inversion-based trajectory preshaping, a maximum following error around 25 and 50 nm is obtained for tracking a simple harmonic and a complicated trajectory, respectively.</description><subject>Beam theory (structures)</subject><subject>Couplings</subject><subject>Curves</subject><subject>Driving conditions</subject><subject>Euler-Bernoulli beams</subject><subject>Fasteners</subject><subject>Finite element method</subject><subject>Flexing</subject><subject>Kinematics</subject><subject>Multiobjective optimization</subject><subject>nanometric ultra-fast tool servo (NM-FTS)</subject><subject>piezo-actuated flexure mechanism</subject><subject>Servomotors</subject><subject>Shape</subject><subject>Stiffness</subject><subject>Strain</subject><subject>Tracking</subject><subject>Trajectories</subject><subject>trajectory preshaping</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dTcPCbJUvrQQtGF03XIpEmZ2k5qMhX6753S4uqexXfOhQ-hRyAjAKJfqvl0RAnoEVW6BMKu0ACEkIXWXF2jAaFSFYTw8hbd5bwhBLgAMUCTic_NusW2XeEq2Y13XUzHU3TfTbvGMWCLP2wbd75LjcPLbZdsMbO5w1WMW_zl02-8RzfBbrN_uNwhWs6m1fi9WHy-zcevi8IxprqipsIrTYgAK2VwsgZZi5WEAMpZECvLedBOac5rFiT3pdNcWseD1Yx65tkQPZ939yn-HHzuzCYeUtu_NJQqwZiggvQUOVMuxZyTD2afmp1NRwPEnFyZ3pU5uTIXV33l6VxpvPf_uCqZEAzYH_kuY-c</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Zhu, Zhiwei</creator><creator>Du, Hanheng</creator><creator>Zhou, Rongjing</creator><creator>Huang, Peng</creator><creator>Zhu, Wu-Le</creator><creator>Guo, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2956-6748</orcidid><orcidid>https://orcid.org/0000-0001-5363-9797</orcidid><orcidid>https://orcid.org/0000-0003-3495-688X</orcidid></search><sort><creationdate>202001</creationdate><title>Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo</title><author>Zhu, Zhiwei ; Du, Hanheng ; Zhou, Rongjing ; Huang, Peng ; Zhu, Wu-Le ; Guo, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beam theory (structures)</topic><topic>Couplings</topic><topic>Curves</topic><topic>Driving conditions</topic><topic>Euler-Bernoulli beams</topic><topic>Fasteners</topic><topic>Finite element method</topic><topic>Flexing</topic><topic>Kinematics</topic><topic>Multiobjective optimization</topic><topic>nanometric ultra-fast tool servo (NM-FTS)</topic><topic>piezo-actuated flexure mechanism</topic><topic>Servomotors</topic><topic>Shape</topic><topic>Stiffness</topic><topic>Strain</topic><topic>Tracking</topic><topic>Trajectories</topic><topic>trajectory preshaping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhiwei</creatorcontrib><creatorcontrib>Du, Hanheng</creatorcontrib><creatorcontrib>Zhou, Rongjing</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Zhu, Wu-Le</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhiwei</au><au>Du, Hanheng</au><au>Zhou, Rongjing</au><au>Huang, Peng</au><au>Zhu, Wu-Le</au><au>Guo, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper reports on the development of a piezo-actuated nanometric ultra-fast tool servo (NU-FTS) for nanocutting. For motion guidance, a flexure mechanism is especially designed using a novel kind of generalized flexure hinges with the notch profiles described by a rational Bezier curve. Both kinematics and dynamics properties of the mechanism are comprehensively modeled through a novel finite beam modeling method. With this model, the hinge is divided into a set of serially connected beams with constant cross sections. The equivalent stiffness and lumped moving mass of the mechanism are derived based on the Euler-Bernoulli beam theory. Taking advantage of the structure and performance model, the notch shape as well as the dimensions are optimized to achieve the specified criteria for the NU-FTS. Performance of the designed mechanism is verified through both finite-element analysis and practical testing on a prototype. Overall, the NU-FTS is demonstrated to have a stroke of 6 and 1.2 <inline-formula><tex-math notation="LaTeX"> \mu </tex-math></inline-formula>m for the quasi-static and 10 kHz driving condition, respectively. Through dynamics inversion-based trajectory preshaping, a maximum following error around 25 and 50 nm is obtained for tracking a simple harmonic and a complicated trajectory, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2896103</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2956-6748</orcidid><orcidid>https://orcid.org/0000-0001-5363-9797</orcidid><orcidid>https://orcid.org/0000-0003-3495-688X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-01, Vol.67 (1), p.432-441 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2285335250 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Beam theory (structures) Couplings Curves Driving conditions Euler-Bernoulli beams Fasteners Finite element method Flexing Kinematics Multiobjective optimization nanometric ultra-fast tool servo (NM-FTS) piezo-actuated flexure mechanism Servomotors Shape Stiffness Strain Tracking Trajectories trajectory preshaping |
title | Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Trajectory%20Tracking%20of%20a%20Nanometric%20Ultra-Fast%20Tool%20Servo&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhu,%20Zhiwei&rft.date=2020-01&rft.volume=67&rft.issue=1&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2896103&rft_dat=%3Cproquest_ieee_%3E2285335250%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b25e890051a77fc7b17b5d71f18ca15da44f9c8944b3f74e6c947ac4fa932e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285335250&rft_id=info:pmid/&rft_ieee_id=8635531&rfr_iscdi=true |