Loading…

Learning SO(3) Equivariant Representations with Spherical CNNs

We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision 2020-03, Vol.128 (3), p.588-600
Main Authors: Esteves, Carlos, Allen-Blanchette, Christine, Makadia, Ameesh, Daniilidis, Kostas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3
cites cdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3
container_end_page 600
container_issue 3
container_start_page 588
container_title International journal of computer vision
container_volume 128
creator Esteves, Carlos
Allen-Blanchette, Christine
Makadia, Ameesh
Daniilidis, Kostas
description We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.
doi_str_mv 10.1007/s11263-019-01220-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2285410420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616358964</galeid><sourcerecordid>A616358964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKt_wKcFX_RhayaXvbwIpdQLlBasPodsNmlT2uw22Vb890ZX8E2GYeBwvpnhIHQNeAQY5_cBgGQ0xVDGJgSncIIGwHOaAsP8FA1wGUWelXCOLkLYYIxJQegAPcy09M66VbJc3NK7ZLo_2KP0VrouedWt10G7Tna2cSH5sN06WbZr7a2S22Qyn4dLdGbkNuir3zlE74_Tt8lzOls8vUzGs1RRXnRpVdVZQTlQnZuMgeJVWenCFGXJca3AVHmdE5PXrOYYCs4rqTRTjNaQU8ZB0SG66fe2vtkfdOjEpjl4F08KQgrOADOCo2vUu1Zyq4V1pum8VLFqvbOqcdrYqI8zyOJXZcYiQHpA-SYEr41ovd1J_ykAi-9gRR-siMGKn2AFRIj2UIhmt9L-75d_qC9Mo3k8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285410420</pqid></control><display><type>article</type><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creator><creatorcontrib>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creatorcontrib><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-019-01220-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Artificial Intelligence ; Artificial neural networks ; Classification ; Computer Imaging ; Computer Science ; Data augmentation ; Image Processing and Computer Vision ; Neural networks ; Pattern Recognition ; Pattern Recognition and Graphics ; Shape recognition ; Spherical harmonics ; Three dimensional models ; Vision</subject><ispartof>International journal of computer vision, 2020-03, Vol.128 (3), p.588-600</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</citedby><cites>FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</cites><orcidid>0000-0001-9413-1201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2285410420/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2285410420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Shape recognition</subject><subject>Spherical harmonics</subject><subject>Three dimensional models</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kFtLAzEQhYMoWKt_wKcFX_RhayaXvbwIpdQLlBasPodsNmlT2uw22Vb890ZX8E2GYeBwvpnhIHQNeAQY5_cBgGQ0xVDGJgSncIIGwHOaAsP8FA1wGUWelXCOLkLYYIxJQegAPcy09M66VbJc3NK7ZLo_2KP0VrouedWt10G7Tna2cSH5sN06WbZr7a2S22Qyn4dLdGbkNuir3zlE74_Tt8lzOls8vUzGs1RRXnRpVdVZQTlQnZuMgeJVWenCFGXJca3AVHmdE5PXrOYYCs4rqTRTjNaQU8ZB0SG66fe2vtkfdOjEpjl4F08KQgrOADOCo2vUu1Zyq4V1pum8VLFqvbOqcdrYqI8zyOJXZcYiQHpA-SYEr41ovd1J_ykAi-9gRR-siMGKn2AFRIj2UIhmt9L-75d_qC9Mo3k8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Esteves, Carlos</creator><creator>Allen-Blanchette, Christine</creator><creator>Makadia, Ameesh</creator><creator>Daniilidis, Kostas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9413-1201</orcidid></search><sort><creationdate>20200301</creationdate><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><author>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Shape recognition</topic><topic>Spherical harmonics</topic><topic>Three dimensional models</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteves, Carlos</au><au>Allen-Blanchette, Christine</au><au>Makadia, Ameesh</au><au>Daniilidis, Kostas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning SO(3) Equivariant Representations with Spherical CNNs</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>128</volume><issue>3</issue><spage>588</spage><epage>600</epage><pages>588-600</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-019-01220-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9413-1201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2020-03, Vol.128 (3), p.588-600
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_journals_2285410420
source ABI/INFORM Global; Springer Link
subjects Analysis
Artificial Intelligence
Artificial neural networks
Classification
Computer Imaging
Computer Science
Data augmentation
Image Processing and Computer Vision
Neural networks
Pattern Recognition
Pattern Recognition and Graphics
Shape recognition
Spherical harmonics
Three dimensional models
Vision
title Learning SO(3) Equivariant Representations with Spherical CNNs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20SO(3)%20Equivariant%20Representations%20with%20Spherical%20CNNs&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Esteves,%20Carlos&rft.date=2020-03-01&rft.volume=128&rft.issue=3&rft.spage=588&rft.epage=600&rft.pages=588-600&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-019-01220-1&rft_dat=%3Cgale_proqu%3EA616358964%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285410420&rft_id=info:pmid/&rft_galeid=A616358964&rfr_iscdi=true