Loading…
Learning SO(3) Equivariant Representations with Spherical CNNs
We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we...
Saved in:
Published in: | International journal of computer vision 2020-03, Vol.128 (3), p.588-600 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3 |
container_end_page | 600 |
container_issue | 3 |
container_start_page | 588 |
container_title | International journal of computer vision |
container_volume | 128 |
creator | Esteves, Carlos Allen-Blanchette, Christine Makadia, Ameesh Daniilidis, Kostas |
description | We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks. |
doi_str_mv | 10.1007/s11263-019-01220-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2285410420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616358964</galeid><sourcerecordid>A616358964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKt_wKcFX_RhayaXvbwIpdQLlBasPodsNmlT2uw22Vb890ZX8E2GYeBwvpnhIHQNeAQY5_cBgGQ0xVDGJgSncIIGwHOaAsP8FA1wGUWelXCOLkLYYIxJQegAPcy09M66VbJc3NK7ZLo_2KP0VrouedWt10G7Tna2cSH5sN06WbZr7a2S22Qyn4dLdGbkNuir3zlE74_Tt8lzOls8vUzGs1RRXnRpVdVZQTlQnZuMgeJVWenCFGXJca3AVHmdE5PXrOYYCs4rqTRTjNaQU8ZB0SG66fe2vtkfdOjEpjl4F08KQgrOADOCo2vUu1Zyq4V1pum8VLFqvbOqcdrYqI8zyOJXZcYiQHpA-SYEr41ovd1J_ykAi-9gRR-siMGKn2AFRIj2UIhmt9L-75d_qC9Mo3k8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285410420</pqid></control><display><type>article</type><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creator><creatorcontrib>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creatorcontrib><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-019-01220-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Artificial Intelligence ; Artificial neural networks ; Classification ; Computer Imaging ; Computer Science ; Data augmentation ; Image Processing and Computer Vision ; Neural networks ; Pattern Recognition ; Pattern Recognition and Graphics ; Shape recognition ; Spherical harmonics ; Three dimensional models ; Vision</subject><ispartof>International journal of computer vision, 2020-03, Vol.128 (3), p.588-600</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</citedby><cites>FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</cites><orcidid>0000-0001-9413-1201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2285410420/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2285410420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Shape recognition</subject><subject>Spherical harmonics</subject><subject>Three dimensional models</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kFtLAzEQhYMoWKt_wKcFX_RhayaXvbwIpdQLlBasPodsNmlT2uw22Vb890ZX8E2GYeBwvpnhIHQNeAQY5_cBgGQ0xVDGJgSncIIGwHOaAsP8FA1wGUWelXCOLkLYYIxJQegAPcy09M66VbJc3NK7ZLo_2KP0VrouedWt10G7Tna2cSH5sN06WbZr7a2S22Qyn4dLdGbkNuir3zlE74_Tt8lzOls8vUzGs1RRXnRpVdVZQTlQnZuMgeJVWenCFGXJca3AVHmdE5PXrOYYCs4rqTRTjNaQU8ZB0SG66fe2vtkfdOjEpjl4F08KQgrOADOCo2vUu1Zyq4V1pum8VLFqvbOqcdrYqI8zyOJXZcYiQHpA-SYEr41ovd1J_ykAi-9gRR-siMGKn2AFRIj2UIhmt9L-75d_qC9Mo3k8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Esteves, Carlos</creator><creator>Allen-Blanchette, Christine</creator><creator>Makadia, Ameesh</creator><creator>Daniilidis, Kostas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9413-1201</orcidid></search><sort><creationdate>20200301</creationdate><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><author>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Shape recognition</topic><topic>Spherical harmonics</topic><topic>Three dimensional models</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteves, Carlos</au><au>Allen-Blanchette, Christine</au><au>Makadia, Ameesh</au><au>Daniilidis, Kostas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning SO(3) Equivariant Representations with Spherical CNNs</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>128</volume><issue>3</issue><spage>588</spage><epage>600</epage><pages>588-600</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard 3D shape retrieval and classification benchmarks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-019-01220-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9413-1201</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2020-03, Vol.128 (3), p.588-600 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_journals_2285410420 |
source | ABI/INFORM Global; Springer Link |
subjects | Analysis Artificial Intelligence Artificial neural networks Classification Computer Imaging Computer Science Data augmentation Image Processing and Computer Vision Neural networks Pattern Recognition Pattern Recognition and Graphics Shape recognition Spherical harmonics Three dimensional models Vision |
title | Learning SO(3) Equivariant Representations with Spherical CNNs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20SO(3)%20Equivariant%20Representations%20with%20Spherical%20CNNs&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Esteves,%20Carlos&rft.date=2020-03-01&rft.volume=128&rft.issue=3&rft.spage=588&rft.epage=600&rft.pages=588-600&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-019-01220-1&rft_dat=%3Cgale_proqu%3EA616358964%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-bbd683513e7f641c5b9be8f89950dc1fb7d72f7d4d501855bace4c43d173451c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285410420&rft_id=info:pmid/&rft_galeid=A616358964&rfr_iscdi=true |