Loading…

Future Frame Prediction Using Convolutional VRNN for Anomaly Detection

Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of gener...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Lu, Yiwei, Reddy, Mahesh Kumar Krishna, Seyed shahabeddin Nabavi, Wang, Yang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lu, Yiwei
Reddy, Mahesh Kumar Krishna
Seyed shahabeddin Nabavi
Wang, Yang
description Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2285413690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285413690</sourcerecordid><originalsourceid>FETCH-proquest_journals_22854136903</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC6kCZtrUupBldFRN2WoK_Skiaaj-Dt_eABXA0Mw4xIxDhPkzJjbEJi53pKKSsWLM95RIQIPlgEYeWAsLN46c6-MxqOrtNXqIx-GBU-Rio47esaWmNhpc0g1RPW6PGbz8i4lcph_OOUzMXmUG2TmzX3gM43vQn2_XANY2WepbxYUv5f9QKc_TsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285413690</pqid></control><display><type>article</type><title>Future Frame Prediction Using Convolutional VRNN for Anomaly Detection</title><source>Publicly Available Content Database</source><creator>Lu, Yiwei ; Reddy, Mahesh Kumar Krishna ; Seyed shahabeddin Nabavi ; Wang, Yang</creator><creatorcontrib>Lu, Yiwei ; Reddy, Mahesh Kumar Krishna ; Seyed shahabeddin Nabavi ; Wang, Yang</creatorcontrib><description>Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Semi-supervised learning</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2285413690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Lu, Yiwei</creatorcontrib><creatorcontrib>Reddy, Mahesh Kumar Krishna</creatorcontrib><creatorcontrib>Seyed shahabeddin Nabavi</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><title>Future Frame Prediction Using Convolutional VRNN for Anomaly Detection</title><title>arXiv.org</title><description>Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.</description><subject>Anomalies</subject><subject>Semi-supervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC6kCZtrUupBldFRN2WoK_Skiaaj-Dt_eABXA0Mw4xIxDhPkzJjbEJi53pKKSsWLM95RIQIPlgEYeWAsLN46c6-MxqOrtNXqIx-GBU-Rio47esaWmNhpc0g1RPW6PGbz8i4lcph_OOUzMXmUG2TmzX3gM43vQn2_XANY2WepbxYUv5f9QKc_TsA</recordid><startdate>20191018</startdate><enddate>20191018</enddate><creator>Lu, Yiwei</creator><creator>Reddy, Mahesh Kumar Krishna</creator><creator>Seyed shahabeddin Nabavi</creator><creator>Wang, Yang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191018</creationdate><title>Future Frame Prediction Using Convolutional VRNN for Anomaly Detection</title><author>Lu, Yiwei ; Reddy, Mahesh Kumar Krishna ; Seyed shahabeddin Nabavi ; Wang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22854136903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomalies</topic><topic>Semi-supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yiwei</creatorcontrib><creatorcontrib>Reddy, Mahesh Kumar Krishna</creatorcontrib><creatorcontrib>Seyed shahabeddin Nabavi</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yiwei</au><au>Reddy, Mahesh Kumar Krishna</au><au>Seyed shahabeddin Nabavi</au><au>Wang, Yang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Future Frame Prediction Using Convolutional VRNN for Anomaly Detection</atitle><jtitle>arXiv.org</jtitle><date>2019-10-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2285413690
source Publicly Available Content Database
subjects Anomalies
Semi-supervised learning
title Future Frame Prediction Using Convolutional VRNN for Anomaly Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Future%20Frame%20Prediction%20Using%20Convolutional%20VRNN%20for%20Anomaly%20Detection&rft.jtitle=arXiv.org&rft.au=Lu,%20Yiwei&rft.date=2019-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2285413690%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22854136903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285413690&rft_id=info:pmid/&rfr_iscdi=true