Loading…

Time‐dependent photon statistics in variable media

We find explicit solutions of the Heisenberg equations of motion for a quadratic Hamiltonian, which describes a generic model of variable media in the case of multiparameter squeezed input photon configuration. The corresponding probability amplitudes and photon statistics are also derived in the Sc...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2019-10, Vol.42 (15), p.5040-5051
Main Authors: Kryuchkov, Sergey I., Suazo, Erwin, Suslov, Sergei K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2545-9f45539ecfc4aca10f553e12dfa94b22d67478c7603ac10f2b664a75b2b097543
container_end_page 5051
container_issue 15
container_start_page 5040
container_title Mathematical methods in the applied sciences
container_volume 42
creator Kryuchkov, Sergey I.
Suazo, Erwin
Suslov, Sergei K.
description We find explicit solutions of the Heisenberg equations of motion for a quadratic Hamiltonian, which describes a generic model of variable media in the case of multiparameter squeezed input photon configuration. The corresponding probability amplitudes and photon statistics are also derived in the Schrödinger picture in an operator setting of the quantum electrodynamics; a comparison discussion is made in Heisenberg's picture as well. The unitary transformation and an extension of the squeeze/evolution operator are introduced formally. The time‐dependent photon probability amplitudes with respect to the Fock basis are indeed derived in an operator form. Further, explicit expressions for the matrix elements of the displacement and squeeze operators are derived in terms of hypergeometric functions and solutions of a certain Ermakov‐type system. In the Supporting Information, we provide a computer algebra verification of the derivation of the Ermakov‐system and of the solutions of the Heisenberg equations.
doi_str_mv 10.1002/mma.5285
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2287031685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287031685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-9f45539ecfc4aca10f553e12dfa94b22d67478c7603ac10f2b664a75b2b097543</originalsourceid><addsrcrecordid>eNp10M9KAzEQBvAgCq5V8BEWvHjZOskmm82xFK1Ci5d6Dtlsgin7z2Sr9OYj-Iw-ianr1dMwzI9v4EPoGsMcA5C7tlVzRkp2ghIMQmSY8uIUJYA5ZJRgeo4uQtgBQIkxSRDdutZ8f37VZjBdbboxHV77se_SMKrRhdHpkLoufVfeqaoxaWtqpy7RmVVNMFd_c4ZeHu63y8ds_bx6Wi7WmSaMskxYylgujLaaKq0w2LgaTGqrBK0IqQtOeal5AbnS8UqqoqCKs4pUIDij-QzdTLmD79_2Joxy1-99F19KQkoOOS5KFtXtpLTvQ_DGysG7VvmDxCCPncjYiTx2Emk20Q_XmMO_Tm42i1__A3rNYfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287031685</pqid></control><display><type>article</type><title>Time‐dependent photon statistics in variable media</title><source>Wiley</source><creator>Kryuchkov, Sergey I. ; Suazo, Erwin ; Suslov, Sergei K.</creator><creatorcontrib>Kryuchkov, Sergey I. ; Suazo, Erwin ; Suslov, Sergei K.</creatorcontrib><description>We find explicit solutions of the Heisenberg equations of motion for a quadratic Hamiltonian, which describes a generic model of variable media in the case of multiparameter squeezed input photon configuration. The corresponding probability amplitudes and photon statistics are also derived in the Schrödinger picture in an operator setting of the quantum electrodynamics; a comparison discussion is made in Heisenberg's picture as well. The unitary transformation and an extension of the squeeze/evolution operator are introduced formally. The time‐dependent photon probability amplitudes with respect to the Fock basis are indeed derived in an operator form. Further, explicit expressions for the matrix elements of the displacement and squeeze operators are derived in terms of hypergeometric functions and solutions of a certain Ermakov‐type system. In the Supporting Information, we provide a computer algebra verification of the derivation of the Ermakov‐system and of the solutions of the Heisenberg equations.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5285</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Amplitudes ; closed and approximate solutions to the Schrödinger equation ; Computer algebra ; Equations of motion ; Ermakov equation ; generalized harmonic oscillators ; Heisenberg equations of motion ; Hypergeometric functions ; Operators (mathematics) ; partial differential equations ; photon statistics ; Photons ; Program verification (computers) ; Quantum electrodynamics ; Time dependence</subject><ispartof>Mathematical methods in the applied sciences, 2019-10, Vol.42 (15), p.5040-5051</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-9f45539ecfc4aca10f553e12dfa94b22d67478c7603ac10f2b664a75b2b097543</cites><orcidid>0000-0002-1507-3697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kryuchkov, Sergey I.</creatorcontrib><creatorcontrib>Suazo, Erwin</creatorcontrib><creatorcontrib>Suslov, Sergei K.</creatorcontrib><title>Time‐dependent photon statistics in variable media</title><title>Mathematical methods in the applied sciences</title><description>We find explicit solutions of the Heisenberg equations of motion for a quadratic Hamiltonian, which describes a generic model of variable media in the case of multiparameter squeezed input photon configuration. The corresponding probability amplitudes and photon statistics are also derived in the Schrödinger picture in an operator setting of the quantum electrodynamics; a comparison discussion is made in Heisenberg's picture as well. The unitary transformation and an extension of the squeeze/evolution operator are introduced formally. The time‐dependent photon probability amplitudes with respect to the Fock basis are indeed derived in an operator form. Further, explicit expressions for the matrix elements of the displacement and squeeze operators are derived in terms of hypergeometric functions and solutions of a certain Ermakov‐type system. In the Supporting Information, we provide a computer algebra verification of the derivation of the Ermakov‐system and of the solutions of the Heisenberg equations.</description><subject>Amplitudes</subject><subject>closed and approximate solutions to the Schrödinger equation</subject><subject>Computer algebra</subject><subject>Equations of motion</subject><subject>Ermakov equation</subject><subject>generalized harmonic oscillators</subject><subject>Heisenberg equations of motion</subject><subject>Hypergeometric functions</subject><subject>Operators (mathematics)</subject><subject>partial differential equations</subject><subject>photon statistics</subject><subject>Photons</subject><subject>Program verification (computers)</subject><subject>Quantum electrodynamics</subject><subject>Time dependence</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9KAzEQBvAgCq5V8BEWvHjZOskmm82xFK1Ci5d6Dtlsgin7z2Sr9OYj-Iw-ianr1dMwzI9v4EPoGsMcA5C7tlVzRkp2ghIMQmSY8uIUJYA5ZJRgeo4uQtgBQIkxSRDdutZ8f37VZjBdbboxHV77se_SMKrRhdHpkLoufVfeqaoxaWtqpy7RmVVNMFd_c4ZeHu63y8ds_bx6Wi7WmSaMskxYylgujLaaKq0w2LgaTGqrBK0IqQtOeal5AbnS8UqqoqCKs4pUIDij-QzdTLmD79_2Joxy1-99F19KQkoOOS5KFtXtpLTvQ_DGysG7VvmDxCCPncjYiTx2Emk20Q_XmMO_Tm42i1__A3rNYfk</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Kryuchkov, Sergey I.</creator><creator>Suazo, Erwin</creator><creator>Suslov, Sergei K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1507-3697</orcidid></search><sort><creationdate>201910</creationdate><title>Time‐dependent photon statistics in variable media</title><author>Kryuchkov, Sergey I. ; Suazo, Erwin ; Suslov, Sergei K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-9f45539ecfc4aca10f553e12dfa94b22d67478c7603ac10f2b664a75b2b097543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>closed and approximate solutions to the Schrödinger equation</topic><topic>Computer algebra</topic><topic>Equations of motion</topic><topic>Ermakov equation</topic><topic>generalized harmonic oscillators</topic><topic>Heisenberg equations of motion</topic><topic>Hypergeometric functions</topic><topic>Operators (mathematics)</topic><topic>partial differential equations</topic><topic>photon statistics</topic><topic>Photons</topic><topic>Program verification (computers)</topic><topic>Quantum electrodynamics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryuchkov, Sergey I.</creatorcontrib><creatorcontrib>Suazo, Erwin</creatorcontrib><creatorcontrib>Suslov, Sergei K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryuchkov, Sergey I.</au><au>Suazo, Erwin</au><au>Suslov, Sergei K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time‐dependent photon statistics in variable media</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-10</date><risdate>2019</risdate><volume>42</volume><issue>15</issue><spage>5040</spage><epage>5051</epage><pages>5040-5051</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We find explicit solutions of the Heisenberg equations of motion for a quadratic Hamiltonian, which describes a generic model of variable media in the case of multiparameter squeezed input photon configuration. The corresponding probability amplitudes and photon statistics are also derived in the Schrödinger picture in an operator setting of the quantum electrodynamics; a comparison discussion is made in Heisenberg's picture as well. The unitary transformation and an extension of the squeeze/evolution operator are introduced formally. The time‐dependent photon probability amplitudes with respect to the Fock basis are indeed derived in an operator form. Further, explicit expressions for the matrix elements of the displacement and squeeze operators are derived in terms of hypergeometric functions and solutions of a certain Ermakov‐type system. In the Supporting Information, we provide a computer algebra verification of the derivation of the Ermakov‐system and of the solutions of the Heisenberg equations.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5285</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1507-3697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2019-10, Vol.42 (15), p.5040-5051
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2287031685
source Wiley
subjects Amplitudes
closed and approximate solutions to the Schrödinger equation
Computer algebra
Equations of motion
Ermakov equation
generalized harmonic oscillators
Heisenberg equations of motion
Hypergeometric functions
Operators (mathematics)
partial differential equations
photon statistics
Photons
Program verification (computers)
Quantum electrodynamics
Time dependence
title Time‐dependent photon statistics in variable media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%90dependent%20photon%20statistics%20in%20variable%20media&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kryuchkov,%20Sergey%20I.&rft.date=2019-10&rft.volume=42&rft.issue=15&rft.spage=5040&rft.epage=5051&rft.pages=5040-5051&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5285&rft_dat=%3Cproquest_cross%3E2287031685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2545-9f45539ecfc4aca10f553e12dfa94b22d67478c7603ac10f2b664a75b2b097543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287031685&rft_id=info:pmid/&rfr_iscdi=true