Loading…
Particle Energization in Space Plasmas: Towards a Multi-Point, Multi-Scale Plasma Observatory. A White Paper for the Voyage 2050 long-term plan in the ESA's Science Programme
This White Paper outlines the importance of addressing the fundamental science theme through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection,waves and turbulence, jets and their combinations. Answering these q...
Saved in:
Published in: | arXiv.org 2019-09 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This White Paper outlines the importance of addressing the fundamental science theme through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection,waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class plasma observatory consisting of at least 7 spacecraft covering fluid, ion and electron scales are needed. The plasma observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2035-2050 science program, it would further strengthen the European scientific and technical leadership in this important field. |
---|---|
ISSN: | 2331-8422 |