Loading…
The structure and pressure characteristics of graduated compression stockings: experimental and numerical study
The incorporation of pressure levels and pressure gradients in the design of compression stockings offers excellent potential to enhance function in the sport science, clinical research and rehabilitation fields. Yet, the connection of processing parameters and structure accompanying the pressure ch...
Saved in:
Published in: | Textile research journal 2019-12, Vol.89 (23-24), p.5218-5225 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The incorporation of pressure levels and pressure gradients in the design of compression stockings offers excellent potential to enhance function in the sport science, clinical research and rehabilitation fields. Yet, the connection of processing parameters and structure accompanying the pressure characteristic of current graduated compression stockings (GCS) is not well quantitatively studied. To bridge this knowledge gap, this study aims to analyze the effects of processing parameters, such as elastane yarn count, loop length and elastane feeding tension, on the structure and pressure behavior of GCS in our work. In addition, to investigate the mechanism of the pressure characteristic, two numerical models, the cylinder model and the conical model, are employed to predict the pressure value and the pressure gradient of stockings. The experimental results of the statistical analysis indicate that the loop length is a key factor to control the wale density, length of stockings and final pressure values. Moreover, the elastane feeding tension could affect the course density, girth of stockings and pressure gradient. On the other hand, the numerical results reveal that the conical model is suited for predicting the pressure values because of the change in radius of the limb in the model. The entire experimental and numerical work provide the mechanism for the study basis of processing, structure and pressure characteristics of GCS. |
---|---|
ISSN: | 0040-5175 1746-7748 |
DOI: | 10.1177/0040517519855319 |